
1

Optimizing Linux System

Chase Maupin
ASP Catalog Applications
Derived from presentation by Juan Gonzales and Brijesh Singh

2

2

Objective

• Speed up your software
– Reduce the system boot time

• Save money
– Reduce the amount of memory (DDR and Flash)

required
• How? Optimizing the software

3

3

Agenda

• Overview of Motion JPEG application
• Optimizing Linux Kernel and File System
• Configuring DSP algorithm
• Optimized Motion JPEG Server demo

-emphasize demo will be shown at the end

4

4

Motion JPEG Application

DM6446

DaVinci EVM

Video
In

UARTAudio
In

Audio
Out

HPI
Out

ENET

USB
DAC
Out

SPIDF
Analog

SPDIF
Optical

-If you cannot read the peripheral text, don’t have it there

5

5

Motion JPEG Application

• Motion JPEG Demo on TMS320DM6446
(spraah9a)

• Customer end-goal: Optimize all areas of
application
– Linux Kernel
– File System
– DSP Algorithm

6

6

Agenda

• Overview of Motion JPEG application
• Optimizing Linux Kernel and File System
• Configuring DSP algorithm
• Optimized Motion JPEG Server demo

7

7

Embedded Linux Optimization
• Linux Boot Process Overview
• Optimizing Linux Kernel

– For Size
– For Speed

• Optimizing File System
– For Size
– For Speed

• DevRocket

8

8

Linux Boot Process

U-boot

Linux Kernel

Initrd (optional)

Init Process

Login Prompt

Power On

Bootloader Code

Initialize hardware

Initial RAM Disk

/sbin/init – 1st process exe by
kernel

Login console

Linux Kernel

File System

Boot Loader

9

9

Embedded Linux Optimization
• Linux Boot Process Overview
• Optimizing Linux Kernel

– For Size
– For Speed

• Optimizing File System
– For Size
– For Speed

U-boot

Init Process

Login Prompt

Linux Kernel

File System

Boot Loader

Needs work (High-light)

10

10

Linux Kernel Configuration

> make ARCH=arm CROSS_COMPILE=arm_v5t_le- menuconfig

11

11

Remove unneeded features

Goal: Smallest kernel necessary to run JPEG Server demo

Remove following important features

- ATA support

- USB support

- SCSI support

- Input device support

- Ext3 file system support

- OSS

- Frame buffer support

12

12

Reduced demo kernel size

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Default DVSDK
(development)

Optimized Kernel
(production)

K
by

te
s

Size in RAM
Size in Flash

13

13

More Ideas

• Remove kernel messages (printk,…)
• TinyLinux patches to remove kernel features

– http://www.selenic.com/linux-tiny

• Boot without sysfs support
– http://www.selenic.com/linux-tiny/index.cgi/BootingWithoutSysFs

• Kernel XIP (eXecute In Place)
– http://elinux.org/Kernel_XIP

• Eliminate excess inlining
• Initramfs instead of initrd

– No artificial size limits or caching
– See Documentation/filesystems/ramfs-rootfs-initramfs.txt in kernel tree

14

14

Embedded Linux Optimization
• Linux Boot Process Overview
• Optimizing Linux Kernel

– For Size
– For Speed

• Optimizing File System
– For Size
– For Speed

U-boot

Init Process

Login Prompt

Linux Kernel

File System

Boot Loader

15

15

Measuring kernel boot time

Apply open source “PrintkTimes” patch to add
timing information to the kernel.
See http://tree.celinuxforum.org/CelfPubWiki/PrintkTimes

"Printk-times" is a simple technology which adds some code to the standard kernel
printk routine, to output timing data with each message. While crude, this can be
used to get an overview of the areas of kernel initialization which take a relatively
long time. This feature is used by the Bootup Time Working Group to identify areas
of the Linux kernel requiring work to improve bootup time, and to measure the
improvements of changes made by the working group. The technology for this
feature consists of a patch and a utility program. The patch alters the printk code in
the kernel to emit the timing data.
UPDATE: The patch was incorporated into the mainline kernel as of version 2.6.11!
Both the feature, and the utility program are now part of mainline Linux!!
With printk-times turned on, the system emits the timing data as a floating point
number of seconds (to microsecond resolution) for the time at which the printk
started. The utility program shows the time between calls, or it can show the times
relative to a specific message. This makes it easier to see the timing for specific
segments of kernel code.

16

16

Disable console output
• Displaying kernel debugging message on console takes

time.

• Disable console output with “quiet” option

• Example:
root=/dev/jffs2 rw init=/bin/sh quiet

You can save time during kernel bootup by disabling the console output. The
easiest way to do this is to use the "quiet" option on the kernel command line
(described below). Printk output is usually directed to a serial port or a VGA console
during bootup. By disabling console output, the time taken to output the characters
(and perform things like software scrolling of the display buffer) is eliminated.
This saves time during kernel bootup by suppressing printk output. Printk output
delays depend on a number of factors, but in the use cases cited below, the savings
were in the range of a few hundred milliseconds. With a serial console, the time to
output characters is dependent on the serial port speed. However, with a VGA
console, the time to output the characters is dependent on the speed of the
processor. Therefore, the slower your processor, the more savings you will gain
from this technique.

17

17

Preset loop_per_jiffy

• You just need to measure this once!

• Find lpj value
Calibrating delay loop... 187.59 BogoMIPS (lpj=937984)

• At the next boots, start Linux with the below option:
lpj=<value>

At each boot, the Linux kernel calibrates a delay loop (for the udelay function). This
measures a loops_per_jiffy (lpj) value. This takes about 25 jiffies (1 jiffy = time
between 2 timer interrupts).In embedded systems, it can be about 250 ms!

18

18

Reduced kernel boot time

0

1

2

3

4

5

6

Default DVSDK (development) Optimized Kernel (production)

Se
co

nd
s

19

19

More Ideas
• Copy kernel from flash to RAM using DMA
• Reduce probe time on some IDE
• Kernel XIP (eXecute In Place)
• Use as many module as possible

-It's necessary to copy binary images, such as a kernel image, file system images,
and so on, from ROM to RAM on bootup if XIP isn't used. In this case, using DMA
transfer is very efficient to save the time and CPU resources.
-I t was noted on a test machine that IDE initialization takes a significant percentage
of the total bootup time. Almost all of this time is spent busywaiting in the routine
ide_delay_50ms(). It is trivial to modify the value of the delay used in this routine.
Reducing the duration of the delay in the ide_delay_50ms() routine provides a
substantial reduction in the overall bootup time for the kernel on a typical desktop
system. It also has potential for use in embedded systems where PCI-based IDE
drives are used.
- When the kernel is executed in place, the bootloader does not have to 1) read the
kernel from flash, 2) decompress the kernel, and 3) write the kernel to RAM.

20

20

Embedded Linux Optimization
• Linux Boot Process Overview
• Optimizing Linux Kernel

– For Size
– For Speed

• Optimizing File System
– For Size
– For Speed

U-boot

Init Process

Login Prompt

Linux Kernel

File System

Boot Loader

21

21

Package Selection

• Default DVSDK contain ~800 packages.

• Select the following packages for our demo
- Busybox
- Initscripts
- Udev
- Sysvinit
- Netbase
- Apache

•Busybox - It provides minimalist replacements for the most common utilities you
would usually find on your desktop system (i.e., ls, cp, mv, mount, tar, etc.). The
utilities in BusyBox generally have fewer options than their full-featured GNU
cousins; however, the options that are included provide the expected functionality
and behave very much like their GNU counterparts.
• initscript - The initscripts package contains the basic system scripts used to boot
your MV Linux system, change run levels, and shut the system down cleanly.
Initscripts also contains the scripts that activate and deactivate most network
interfaces.
•Udev deamon for user space
• sysvinit- The SysVinit package contains a group of processes that control the very
basic functions of your system. SysVinit includes the init program, the first program
started by the Linux kernel when the system boots. Init then controls the startup,
running and shutdown of all other programs.
•Netbase – basic networking scripts
•apache - Http web server

22

22

Reduced demo file system size

0
200
400
600
800

1000
1200
1400
1600
1800

Default DVSDK (development) Optimized File System
(production)

K
B

yt
es

23

23

More Ideas

• Use static compiling for small systems
– Reduces the amount of code actually linked in from a

library
• Strip executables
• Use application XIP (eXecute In Place)
• Use the Advanced XIP File System

– http://axfs.sourceforge.net

Strip - Compiled executables and libraries contain extra information which can be
used to investigate problems in a debugger. This was useful for the tool developer,
but not for the final user. To remove debugging information, use the strip command.
This can save a very significant amount of space!

24

24

Embedded Linux Optimization
• Linux Boot Process Overview
• Optimizing Linux Kernel

– For Size
– For Speed

• Optimizing File System
– For Size
– For Speed

U-boot

Init Process

Login Prompt

Linux Kernel

File System

Boot Loader

25

25

Starting System Services

Linux Kernel Init Process

/etc/init.d/rcS

/etc/rc0.d/…

/etc/rc3.d/…

/sbin/mgetty

26

26

Starting System Services
• SysVinit

Starts services sequentially.Waits for the current startup
script to be complete to start the next one!

• Initng http://initng.thinktux.net
Start services in parallel, as soon as their preconditions
are met.

You can hunt system startup trouble by using
bootchart program (www.bootchart.org)

27

27

More Ideas

• Reading ahead
• Prelinking
• Reduce forking in shell
• Use tmpfs file system

Reading Ahead - Linux keeps the contents of all the files it reads in RAM (in the
page cache), as long as it doesn't need the RAM pages for something else. Idea:
load files (programs and libraries in particular) in RAM cache
before using them. Best done when the system is not doing any I/O. Thanks to this,
programs are not stuck waiting for I/O. Used the Knoppix distribution to achieve
very nice boot speedups. Also planned to be used by Initng. Not very useful for
systems with very little RAM: cached pages are recycled before the files are
accessed.

Prelinking - To load and start an executable, the dynamic linker has a significant
amount of work to do (mainly address relocation) It can take a lot of time for
executables using many shared libraries! In many systems in which executables
and shared libraries never change, the same job is done every time the executable
is started.
• prelink modifies executables and shared libraries to simplify the dynamic linker
relocation work.
•This can greatly reduce startup time for big applications (50% less for KDE!). This
also saves memory consumed by relocations.
•Can be used to reduce the startup time of a Linux system.
•Just needs to be run again when libraries or executables are updated

28

28

Agenda

• Overview of Motion JPEG application
• Optimizing Linux Kernel and File System
• Configuring DSP algorithm
• Optimized Motion JPEG Server demo

29

29

Configuring DSP algorithm

• Goal: DSP Image (algorithm) that runs on
smaller memory footprint (e.g. 64MB Vs
256MB by default)

• Overview of Process
http://wiki.davincidsp.com

• TI and ASPs are here to help!

30

30

Optimizing DSP Server

Code, Stack, and Static Data (.tcf)

DVEVM Default DDR2 Memory Map (256MB)

1MB-128B
Memory for Reset VectorsCTRLRESET128B
Memory for DSPLINKDSPLINKMEM1M

DSP Image4M

Exclusively used for the DSP’s
dynamically allocated memoryDSP heap

122M

CMEM = Continuous Memory
Shared buffers: ARM ↔ DSPCMEM8M

When booted with MEM=120MLinux

0

120M

DSP
linker

segments

Linux

31

31

Optimizing DSP Server

Code, Stack, and Static Data (.tcf)

1MB - 128B
Memory for Reset VectorsCTRLRESET128B
Memory for DSPLINK

DSPLINKMEM

DSP Image
3M

Exclusively used for the DSP’s
dynamically allocated memoryDSP heap

4M

CMEM = Continuous Memory
Shared buffers: ARM ↔ DSPCMEM4M

When booted with MEM=52MLinux

0

52M

DSP
linker

segments

Linux

Reduced Memory Map (64 MB)

32

32

DSP Server Optimization Links

• http://wiki.davincidsp.com/index.php?title=Changi
ng_the_DVEVM_memory_map

• http://wiki.davincidsp.com/index.php?title=Codec_
Engine_configuration_en_breve

33

33

Agenda

• Overview of Motion JPEG application
• Optimizing Linux Kernel and File System
• Configuring DSP algorithm
• Optimized Motion JPEG Server demo

-

34

34

Optimized JPEG Server demo

35

35

Resources

• Inside Linux Boot Process
http://www.ibm.com/developerworks/linux/library/l-
linuxboot/index.html

• Boot Time Resource
http://tree.celinuxforum.org/pubwiki/moin.cgi/BootupTimeReso
urces

• Embedded Linux Resources
http://www.elinux.org/

• Davinci wiki
http://www.wiki.davincidsp.com

