

HARDWARE
SOFTWARE

CONTROL TECHNOLOGY
P.O. Box 4605

Mountain View CA 94040

Voice: 650 962-0298
Fax: 650 962-0298

ViTRAX PLUS is a trademarks of Control Technology, Box 4605, Mtn View CA 94040. The ViTRAX Controller design and associated
documentation in this manual are copyrighted by Control Technology. All rights are reserved.

Vitrax Plus Operations Manual - Page

OPERATION and PROGRAMMING MANUAL

Vitrax Plustm Controller

 Document # 960627-OPP

 TABLE OF CONTENTS PAGE

 Vitrax-PLUS Controller Overview . 1
Specifications

 Functional Checkout . 3
Jumper Settings
Power Connection
Serial I/O - Connections, Settings, Baud Rates
Initialization
RS-232 Interface and Digital I/O
Printer Connection

 Vitrax BASIC Programming . 6
Summary: Commands, Functions, Statements, Operators
Commands: Alphabetical Listing & Error Codes
Arithmetic Operations
Direct (Operating System) Commands
Input/Output Commands
External Interrupt Signals
Logical & Comparison Operators
Other Commands
String Manipulation Commands
Trigonometric Functions

 Digital I/O Lines . 22
Configuring the 8255A

 Programming Digital I/O Lines
I/O Connector J7 Pinout & Signals
Digital I/O Mapping

 Serial I/O Channels . 25
Using the Primary (Console) Serial Channel
Using the Secondary Serial Channel
Hardware Arrangement & Data Flow
Initializing the Secondary Serial Channel
Supporting Higher Baud Rates

 Machine Code Programming . 31
 Vitrax System Monitor . 31

Debug Operation
Universal Timer
Memory Diagnostics
Hex/Decimal Conversions

 Programming and Using EPROMs . 35
Auto-Start Mode
Programming Set-up
Supporting Software
EPROM Programming Procedure
Programming Power Supply

 Appendix .37
ASCII Table: Hex and Decimal Values
Printer Cable Assembly
Memory Maps
Component Arrangement Diagram
Component Parts List
Schematic Diagrams

Page - Vitrax-Plus Operations Manual

VITRAX-PLUS Controller OVERVIEW

The Vitrax-PLUS Controller is a compact high performance digital/analog controller
designed for either stand alone operation or as an intelligent embedded sub-system. It
contains features most often required by commercial and industrial control applications
on a single 4.5" x 6.5" board designed to accept optional modules that add expanded
functions without adding size or complexity. Easy to use, program and interface. A
complete high performance low cost controller emphasizing:

Industrial & commercial control
Equipment & sensor monitoring
Automated measurement & test
Data acquisition applications.

The power of the Vitrax-PLUS Controller is based on the 64180 CMOS
microprocessor with its integrated peripheral circuitry and the optimized BASIC
interpreter. A full-featured BASIC-in-ROM, complete with floating-point arithmetic and
interrupt processor, makes the Vitrax-PLUS easy to program even for complex
applications.

To handle a variety of applications, the Vitrax-PLUS System contains 64K bytes of
RAM/EPROM space, a built-in EPROM programmer, 24 digital I/O lines, two RS-232
programmable serial channels and a parallel printer port. Optional modules fit directly
on the single board controller: a 10-bit CMOS A/D converter with eight data channels,
a real-time calendar clock with timekeeping capability from 1/10th second to 10 years,
and a LCD module port with contrast control that accepts 1, 2, and 4-line modules with
up to 80 characters.

SPECIFICATIONS

MICROPROCESSOR: Hitachi HD64180, CMOS design, 6.144 MHz, 8-bit data bus, 16(+3) bit address bus; accumulator,
flag register and 6+6 general purpose registers, 6 special registers for stack pointer, program counter, interrupt vector, fetch
counter and index addressing (2); 47 I/O registers.

Vitrax Plus Operations Manual - Page 1

DIGITAL I/O LINES: 8255A: 24 digital lines configurable as two 8-bit and two 4-bit ports; inputs or outputs with latched
or strobed data. Edge connection: 2 x 25 pin header on 0.1" centers with separate ground lines for each signal line.

CONSOLE SERIAL PORT: RS-232 port utilizing Transmit data, Receive Data, Ground signals. Baud rates of 600, 1200,
2400, 4800, 9600 and 19.2K. Automatic baud rate setting. DB-9 male connector. Internal -5 volt supplied from U10.

SECONDARY SERIAL PORT: Supports Tx, Rx, CTS, RTS, DTR, DSR/DCD, and Ground signals. Baud rates to 38.4K.
Internal -5 volt supplied from U10. Termination for DB-9 male connector. Support in BASIC for port configuration, data
buffer and manager.

FOUR EXTERNAL INTERRUPTS Support in BASIC for interrupt service routines

MEMORY: 16K-byte ROM with BASIC Interpreter and System Control Monitor. EPROM space of 16K bytes (27128
devices) for user application code. One socket, jumperable, for static RAM memory for 8K or 32K-bytes SRAM devices.

PRINTER PORT: Epson/Centronics interface with 7 data lines, strobe (STB), Acknowledge (ACK), Busy (BSY) and
interleaved ground lines. Connection provided as two rows of 13 pins on 0.1" centers. Ribbon cable pinout. Support in
ROM with Cntl-P/LIST and LPRINT commands.

EPROM PROGRAMMER: Programs 27128 / 27128A EPROMs directly from RAM memory using fast algorithm with
byte verify. EPROM and LOAD commands in software. Requires Vpp Programming voltage via edge connector.

FULL FEATURED BASIC in ROM:
 80 Commands Floating Point Arithmetic, double-dimension arrays

Structured interrupt handling RS-232 port configuration with data buffer & manager
 Logical operators On-Board EPROM Programming Commands

String Manipulation Link to Machine Code with ROM-based Monitor

SYSTEM MONITOR in ROM: Machine code debugging with HEX/ASCII Display & Edit. Breakpoint execution with
CPU register/flag displays. Memory diagnostics, timer configuration and hex/decimal translations

AUTO-START OPERATION from application EPROM when power is applied.

A/D CONVERTER OPTION: 8-channels, 10-bit resolution. Settling time of 100 us with ±1 count in 1024 resolution.
0-5vdc operation. Input channels interface through a 2 x 10 header pin connector with alternate ground connections. P/C
Board designed with grounded guard ring for noise immunity.

LCD MODULE PORT OPTION: Supports 1,2 & 4-line displays; Up to 80 Characters; Contrast control; 2x7 pinout with
ribbon cable interface

REAL-TIME CALENDAR CLOCK OPTION: 10 year calendar: plus day-of-week, hours, minutes, seconds & 0.1 second
clock. Calibration function and frequency trimmer cap

PRINTED CIRCUIT BOARD: 4.5" x 6.5" x .062"; double-sided, plated through holes, solder mask, silk-screened
component legend. All connections along board edge. Options fit directly on the single board controller without the need for
card cages or backplanes

POWER: +5 vdc regulated at 200 ma. Negative voltage generated on-board for RS-232 operation and LCD module contrast.

** FUNCTIONAL CHECKOUT **

Page 2 - Vitrax-Plus Operations Manual

This chapter describes how to confirm the operation of the Vitrax Plus Controller.

RAM MEMORY: Two densities of static RAM are supported: 8K x 8 and 32K x 8. One jumper at W4 is required
to configure socket Z8. Refer to the Jumper Table below and Memory Maps in the Appendix.

JUMPER SETTINGS: The p/c board contains jumpers for memory, EPROM programming and serial
transmission. Initially, jumpers W4 and W8 must be set.

SUMMARY TABLE OF JUMPER SETTINGS
 Function Jumper Number Jumper Position
 EPROM Change W1 No jumper except when changing EPROMs in U7
 Memory Density W4 Lower horizontal position for 8Kx8 (HM6264)
 Upper horizontal position for 32Kx8 (HM62256)
 RS-232 #2 (DCE mode) W8 Both jumpers horizontal
 RS-232 #2 (DTE mode) W8 Both jumpers vertical
 RS-232 #2 no DCD0 W9 Default trace solder side or lower horiz jumper
 RS-232 #2 DCD W9 Right vertical jumper (must cut W9 trace on solder side)

POWER CONNECTION: Main power is applied to J14 at the top of board (+ to the left as marked). Power leads are
fastened to a 2-circuit screw-terminal connector. Input must be +5 vdc fully regulated. Use an industrial power supply for
stability and high regulation even though current requirement is low.

SERIAL I/O (RS-232) CONNECTIONS: The serial I/O port at J3 provides a console connection to program the
Vitrax-PLUS Controller using a computer with a serial port or a CRT terminal. A second serial I/O port with full RS-232
protocol exists at J4. The signals at these connectors are arranged in DCE configuration and terminate at DB-9 male
connectors.

CONSOLE CABLE: Assemble and connect a three-wire cable between a programming console and connector J3
(RS-232 Port #1) of the Controller. Most terminals require a male DB-25 connector while many personal computer require
a female cable connector. The Rx and Tx signals at oppsite ends of the cable are connected to each other - and ground is
connected to ground. See the following table.

CABLE CONNECTIONS FOR PROGRAMMING CONSOLE

Signal
SYSTEM CONSOLE (DTE) Vitrax CONTROLLER (DCE)

DB-25M
Pin #

DB-9M
Pin #

DB-9M @J3
Pin # Signal

GND 7 5 5 Gnd

Tx 2 3 3 Rx

Rx 3 2 2 Tx

CONSOLE SETTINGS: Configure the system console to the protocol shown in the following table.
Depending on the type of console, settings may be made in the software of a communication program

(e.g. ProComm) - or from the keyboard or by dip switches or jumpers within the CRT terminal

FUNCTION SETTING

Transmission Full Duplex

 Data Word 7-bit

 Stop Bits One

Vitrax Plus Operations Manual - Page 3

 Parity Even

 Auto LF/CR Off

 Baud Rate 9600 or 19.2K*

 Mode On-Line (FDX)

 Scroll On

 Capital Ltrs On**

 * Use 9600 or 19.2K for speed; 600, 1200, 2400 and 4800 available. Use 9600 in AutoStart Mode
 ** Use CAPITAL LETTERS only; No lower case allowed
 *** Reset may be required for console and controller if parameters are changed during power on.

BAUD RATES: Three factors make it relatively easy to configure the serial ports: The CPU contains the baud rate
generators; programmable I/O registers are available to set the baud rates; and the baud rate for the programming
console is automatically sensed on power-up when the <Enter> key is pressed three times. The configuration software for
serial channel #1 (console port at J3) exists in the BASIC ROM. The baud rate setting for serial port #2 (at connector J4)
can be set with OUT commands to internal registers 00, 02 and 04 (Channel 0) - or with the extended capability contained
in the BASIC ROM. One of its major routines contains a set of memory addresses to hold transmission parameters to
configure the second channel. Other routines, CALLable from BASIC, configure the port and create a data buffer and data
manager for incoming data.

INITIALIZATION: Connect the Vitrax Plus Controller to a programming console with a serial cable attached to connector
J3. Attach a 5.0 volt DC regulated power supply to the appropriate connections at J14. Observe polarity. Apply power to
the programming console. Turn on CAPS LOCK (Shift Lock). Switch on the Controller power supply. Press the <Enter>
key up to four times. Vitrax BASIC should issue a sign-on message, READY and a ">" prompt character. The power-on
sequence initializes the Interpreter. The Interpreter is also reinitialized by typing NEW <Enter>, by momentarily pressing
reset switch SW-1 or by reapplying power to the board. Check that the Controller is functional by typing the following
program:

>10 PRINT "THIS IS A TEST" The program should display:
>20 FOR I=1 TO 5 THIS IS A TEST
>30 PRINT "TEST ",I TEST 1

 >40 NEXT I TEST 2
>50 STOP TEST 3
>RUN <Enter> TEST 4

 TEST 5

 RS-232 INTERFACE: If the unit does not respond with a BASIC prompt sign (>):

* Check console settings: correct COM port, even parity, 7 data bits, one stop bit.

* Some CRT terminals require CTS (pin 5) and DTR (pin 6) signals, to be pulled up to +5 volts. Look for switches in the
terminal - or connect pin 20 to pins 5 (CTS), 6(DSR) and possibly 8(DCD/RLSD) or add 5K pull-up resistors to pins 5, 6
(and 8).

* Connect a scope to J3-3 (Tx). Push reset button SW1 to initialize the system. A high-going start pulse, width equal to
1/baud rate, should appear followed by a space and then by a bit pattern of ASCII characters. At 9600 baud, the start
pulse should be about 100 us. See the following diagram:

TYPICAL FORMAT FOR SERIAL DATA

NAME LOGIC VOLT 0-lsb 1 2 3 4 5 6 7-msb 0-lsb

Space 0 +5v

sp mk sp

Page 4 - Vitrax-Plus Operations Manual

Mark 1 -5v

---------- one character (8 data bits) ----------

start
 bit

 stop
bit

start bit

 One start bit, 7 or 8-bits of data, no parity, one stop bit
 LOGIC 1 = more negative voltage; LOGIC 0 = more positive voltage

DIGITAL INPUT/OUTPUT LINES: The Input/Output lines are controlled by an 8255A device (U15). The OUT commands
(below) show the code needed to produce a latched high signal on a specific pin. Use a voltmeter, logic probe or LED to
check the pin's logic state after each command is entered. Use a '0' as the data byte to generate a low signal. More
information is contained in the Digital I/O Section.

> NEW Initializes system
> OUT 195,128 U15 to output
> OUT 192,16 Set J7 pin 2 high
> OUT 192,0 Set J7 pin 2 low
> OUT 193,8 Set J7 pin 50 high
> OUT 193,0 Set J7 pin 50 low

PRINTER CONNECTOR AND CABLE: Refer to the printer cable assembly diagram (Appendix). The Select In/ signal for
most printers with a Centronics-type interface is asserted low by an switch inside the printer. When the switch is not
present, pin 36 in the Centronics connector can be tied to ground by the printer cable via pin 30 on the Centronics
connector and pin 14 on the Controller Board.

PRINTER CONNECTION: Solder a 2 x 13 pin header to the J6 printer port. Attach the cable. If the printer has a SLCT
IN switch, move it to the 'selected' position. Reset the Controller. Type Cntl-P <Enter>. The printer should echo
characters that are typed on the keyboard or are produced with LIST. Printing occurs when the <Enter> key is pressed.
Printout is also activated by the LPRINT command from within a BASIC program. The Cntl-P command is toggled off
when RUN is invoked.

** VITRAX BASIC PROGRAMMING **

This chapter describes the operation and use of Vitrax BASIC. The first section provides an overview of the language with
general comments. The next section summarizes the commands, statements, functions and operators with the required
format and syntax. Error messages are also explained.

Many programming examples are included in each command group - and these examples are available on MS DOS
compatible diskette.

GENERAL COMMENTS

OPERATING MODES: Vitrax BASIC typically operates from a RUN command executing commands, statements &
functions according to line numbers. BASIC can also operate in command (direct) mode without line numbers.

Vitrax Plus Operations Manual - Page 5

Commands and statements are typed at the prompt ">" and are executed when <Enter> is pressed. Variables can be
PRINTed and memory can be PEEKed.

VARIABLES: Variables consist of a letter or a letter plus a single digit (e.g. A, D0, Q7). String variables add a '$' sign
(e.g B8$). Single and double-dimension arrays use the form X(n) and X(n,m) for array elements. They require initial
configuration with the DIM statement. Up to 286 non-string variables and up to 286 string variables can be used. Each
defined variable occupying six bytes of memory. String variables use one byte per character plus six bytes for overhead.

NUMBERS: All numbers are handled in floating point decimal & exponential format with 6-digit precision. Numerical limits
range from 2E-20 and 5E+18. The BASIC floating point algorithm is accurate to ± 1 digit in the sixth significant digit. For
example, the square root of 16 may be returned as the value 3.99999. Also, BASIC returns numbers in exponential format
that are less than 0.01.

COMMAND FORMAT: Most commands can be truncated to the initial three letters. Examples are PRInt, LISt, ENAble,
EPRom, RETurn. (Exceptions are INPUT and INPUT LINE). The exclamation point, ! , can be substituted for PRINT
and the apostrophe, ' , for REMARK. Spaces are optional. These features save memory space and speed up program
execution.

CNTL-C from the console interrupts and halts program execution.

I/O ACCESS: I/O Registers within the CPU and external I/O devices (Digital I/O lines, Real time clock, A/D converter and
LCD module port) are written with OUT I/O addr, data byte and read with PRI INP(I/O addr) or var=INP(I/O addr).

AUTO-START MODE: When using the EPROM auto-start mode from a power-on condition, the console baud rate must
be set to 9600. It can be reprogrammed with OUT statements to I/O Register 03, bits 0-2. Remember to preserve other
bits.

MULTIPLE STATEMENTS PER LINE: Commands can be grouped on a single line if separated by colons provided the
line does not exceed 72 characters. This feature helps conserve memory. Example:
 200 PRINT "INPUT A POSITIVE NUMBER";:INPUT X:IF X <= 0 GO TO 200:B=55
 250 PRINT "X =";X,"B =";B

If X is negative or zero, the user is prompted to enter a positive number and the program returns to line 200 for new input.
When a positive number is correctly entered, the program proceeds to the next numbered line after line 200.

Care must be exercised in use of multiple statements per line. The above example shows that if the condition of the IF
statement is false, control is passed to the next program line. Anything else on such a multiple statement line will be
ignored. Because of the IF statement, the variable B is never set to 55.

PROTECTED USER MEMORY SPACE: Most applications can be programmed entirely in BASIC using its ability to
transparently allocate memory space. Typically, the BASIC interpreter dynamically allocates RAM memory as a program
is developed and debugged. As BASIC code is being written, the lines of code grow upward from the bottom of RAM
while variable, string and array space fill downward from the top of RAM. Theoretically, the in-between memory space
could be considered for CALLs and POKEd data. BASIC, however, contains a compaction routine that compresses
fragmented memory for more efficient use. Code POKEd into the intervening space could eventually be moved, changed
or destroyed.

Experienced programmers may wish to POKE CALLable machine code routines, tables, parameters, data or drivers into
memory to enhance capability and performance. The initialization routine provides protected user memory space
accessible only by PEEKs, POKEs and CALLs. It isolates BASIC program code, variables, strings and arrays from the
protected RAM space above BFFFH. Memory from C000H to FF00H is available for protected routines and data. A
single 32K x 8 RAM in socket Z8 will supply 16K bytes for BASIC code and nearly 16K bytes of protected space. Refer to
the memory maps and the initialization section for additional information .

Page 6 - Vitrax-Plus Operations Manual

SUMMARY: COMMANDS, FUNCTIONS, STATEMENTS, OPERATORS
(Grouped by Function - Listed Alphabetically)

 FUNCTION COMMANDS, STATEMENTS, FUNCTIONS, OPERATORS
 Arithmetic ABS,EXP,INT,LN,LOG,RANDOMIZE,RND,SGN,SQR,+,-,*,/,^
 Branching CALL,GOSUB,GOTO,IF...THEN
 Comparison IF...THEN,>,<,=,<=,>=,><,&(AND),@(OR),%(XOR)
 EPROM Programming EPROM,LOAD
 Execution CONT,CNTL-C,RUN,STOP,XEQ
 Format/Configuration DIM,NEW,NEW*
 Input DATA,INP,INPUT,INPUT LINE,LET,PEEK,READ,RESTORE
 Interrupts DIS,ENA,OI (ON INTERRUPT)
 Looping FOR...NEXT,
 Miscellaneous FRE,RANDOMIZE,RND
 Output OUT,POKE
 Print and List CNTL-P,LIST, LPRINT,PRINT,!,REM,'
 String Handling ASC,CHR$,INPUT,INPUT LINE,INSTR,LEFT$,LEN,MID$,

NUM$,STRING$,VAL,+
 Trigonometric ATN,SIN,COS,TAN
 Logical Operators &(AND), @(OR), %(XOR)

COMMANDS - (Alphabetical Listing)

The following table lists the commands in the VITRAX BASIC language along with a brief description. A reference page
number is shown for each command group. Refer to the following table for notation explanation. The next section in this
chapter contains expanded definitions & examples.

 COMMAND DESCRIPTION

ARITHMETIC:(page 10)
ABS var Absolute value of var
EXP var Calculate the value of e to power var
INT var Integer value of var
RANDOMIZE Re-seed random number generator
RND var Generate random number between 0 and var (default = 1)
SQR var Square root of var
LOG var Calculate logarithm to base 10 of var
LN var Calculate natural logarithm of var
SGN var Sign of var (-1, 0 or +1)
+, -, *, /,^ Add, subtract, multiply, divide, exponentiation

DIRECT COMMANDS:(page 12)
CONT Continue execution after STOP or break.
CNTL-C Stop execution of the current program
CNTL-P Toggle Printer On/Off
EPROM Program content of RAM text area to EPROM
FRE Returns bytes remaining in RAM not including variables

Vitrax Plus Operations Manual - Page 7

LIST List program to console (& printer if Cntl-P is set)
LOAD Load contents of EPROM in U7 to RAM text area
NEW Initialize BASIC; clears variables, pointers
NEW* Initialize BASIC; retains variable values
RUN Execute the current program.
XEQ Execute the current program without zeroing variables

INPUT/OUT:(page 13)
DATA value, ...Sequential data for READ command
INP (I/O-addr) Read data at (I/O-addr)
INPUT var, var... Input number(s) or string variable(s) - (chnl 1 @ J3)
INPUT LINE $var Input string variable with embedded spaces (chnl 1 @ J3)
|LET| var = expr Assign value of expr to variable. LET is optional
PRINT expr or ! Output expr at J3 for display; or <crlf> if no expr
LPRINT or ! Same as PRINT except output to printer at J6
OUT I/O-addr,data Output data to I/O addr
PEEK (addr) Return the decimal value at addr
POKE addr, value Store value at addr
READ var, var ... Assign data to variables from a DATA table
RESTORE Returns the DATA statement pointer to initial value

INTERRUPTS:(page 14)
DIS Disable Interrupts (mnemonic DI,code F3 hex)
ENAble Enable Interrupts (mnemonic EI,code FB hex)
OI Intr N line # Sets up Interrupt service routine for Intr N at line #

LOGICAL OPERATORS:(page 17)
& {Logical AND} Logical AND as mask for bit determination within a byte
@ {Logical OR} Logical OR for bit determination and setting
% {Logical XOR} Logical XOR function
>,<,=,>=,<=,>< Comparison operators (used with IF)

STRING FUNCTIONS:(page 20)
ASC $var Returns ASCII decimal value of the first character in var$
CHR$ (value) Returns ASCII character of the equivalent decimal value
INPUT $var,$var,.. Input text string(s); no spaces.
INPUT LINE A$ Same as INPUT $var but embedded spaces allowed.
INSTR(p,$var1,$var2) Search for $var2 in $var1 begin at pos p. Returns start pos.
LEFT$(var$,n) Return a string from character position 1 to n in A$
LEN($var) Return the number of characters in $var
MID$($var,p,n) Return a string of n characters start at character pos p
NUM$(var) Convert var to a string with a leading and trailing space
RIGHT$(var$,p) Return a string from character position p to end of $var
STRING$(n,d) Return a string of n ASCII characters with decimal value = d
VAL($var) Convert text string $var to numeric value var
+ Concatenate (join) strings

Page 8 - Vitrax-Plus Operations Manual

TRIGONOMETRIC:(page 22)
COS expr Cosine of expr (in radians)
SIN expr Sine of expr (in radians)
TAN expr Tangent of expr (in radians)
ATN expr Arctangent of expr (in radians)

OTHER COMMANDS:(page 18)
CALL addr Execute a machine code routine at address [addr]
DIM var (expr,expr) Dimension arrays; single or double dimension
FOR...NEXT...STEP FOR loop and counter with NEXT and optional STEP
GOSUB line # Call routine at [line #].
GO TO line # Transfer control to [line #]
IF expr THEN expr.. Rest of line is executed if [expr] is true (non-zero)
NEXT var Ending expression of FOR loop counter
READ var,var,... Assign data to variables from DATA statement
REM or ' Remark statement (no operation)
RESTORE Reset DATA statement pointer to initial value
RETURN Return from subroutine or CALL
STEP Parameter to increment counter in FOR...NEXT loop
STOP Stop execution. Return to COMMAND mode. CONT to continue

 EXPLANATION OF NOTATION USED IN COMMANDS
[addr] = address in direct memory space
[expr] = expression, usually numeric; or a constant or variable
[I/O-addr] = address in I/O space
[line #] = line number in a BASIC program
[str var] = string variable or string expression
[value] = numerical value, constant, data
[var] = variable, number or numeric expression
() = parentheses that must be included as part of a BASIC command
{...} = Expanantory information
<...> = keystroke from console or terminal
|command| = optional|
italics = output from execution of a BASIC program

ERROR CODES
BC Blank Check: EPROM not erased OV Arithmetic overflow; number > 5E+18
DA Insufficient data for READ SN Syntax Error
EP EPROM programming error ST Stack (or syntax) execution error
NX FOR ... NEXT mismatch UN Arithmetic underflow; < 2E-20
OF Fatal arithmetic error VF Verify error; EPROM programming

ARITHMETIC OPERATIONS

There are five arithmetic operators: + for addition, - for subtraction, * for multiplication, / for division and ^ for
exponentiation. Arithmetic is performed in floating point format with numerical limits of 2E-20 to 5E+18. Attempted
division by zero or calling for the square root of a negative number produces a break in program execution and an error
code. The usual algebraic rules for order of execution are followed: Exponentiation, followed by multiplication/division,

Vitrax Plus Operations Manual - Page 9

followed by addition/subtraction. The processing order can be controlled by parentheses. Use them to add clarity and
avoid confusion particularly in complicated expressions.

 ADD, SUBTRACT, MULTIPLY, DIVIDE, POWER: [ARITH1]
10 PRINT "Program to demonstrate the Four Basic Arithmetic Functions and"
15 PRINT "raising a Base 10 number to a power":PRINT
20 A=1.5:B=3:C=2:D=4:E=9:F=10
30 PRINT A;"+";B;"-";C;"*";D;"/";F;" = ";A+B-C*D/F
40 PRINT A;"*";D;"-";C;"+";B;"/";F;" = ";A*D-C+B/F
50 PRINT A;"*";D;"-";C;"+";B;"/";F;"^";C;" = ";A*D-C+B/F^C
55 PRINT A;"* (";D;"-";C;"+";B;") /";F;"^";C" = "A*(D-C+B)/F^C
60 PRINT B;"^3 =";B^3;" "B;"^0.5 =";B^0.5;" "C;"^1.5 =";C^1.5

>RUN
1.5 + 3 - 2 * 4 / 10 = 3.7
1.5 * 4 - 2 + 3 / 10 = 4.3
1.5 * 4 - 2 + 3 / 10 ^ 2 = 4.03
1.5 * (4 - 2 + 3) / 10 ^ 2 = .075
3 ^3 = 26.9999 3 ^0.5 = 1.73204 2 ^1.5 = 2.82842

In lines 30 and 40, multiplication and division are performed before addition and subtraction. In line 30, C is multiplied by D
(2*4=8). The result is divided by F (8/10=0.8). Then A and B are added (1.5+3=4.5) followed by the subtraction of C*D/F
(0.8) to yield 3.7. A similar process occurs for line 40. In line 50, exponentiation is the first arithmetic step. Note in line 55
that parentheses change the processing order compared to line 50. The parenthetical expression, which equates to 5, is
multiplied by 1.5 (=7.5) and then divided by 10^2 (=100) to produce an answer of 0.075.

 EXP: EXPONENTS to Base e [EXP1]
10 PRINT "Program to demonstrate EXP (Base 'e' to a Power) Function":PRINT
20 A=1:B=2:C=2.303:D=5:E=7.25:F=-2.5
30 PRINT EXP(A);EXP(B);EXP(C);EXP(D);EXP(E);EXP(F)

>RUN
2.71827 7.38905 10.0041 148.412 1408.1 .082085

 INT: INTEGER Function [INT1]
10 PRINT "Program to demonstrate INT Function":PRINT
20 A=24:B=-24:C=24.75:D=-24.75:E=-.00374:F=0
30 PRINT INT(A);INT(B);INT(C);INT(D);INT(E);INT(F)

>RUN
24 -24 24 -25 0 0

The INTeger function truncates numbers at the decimal point (no rounding). Note that negative numbers truncate in the
negative direction: variable D (-24.75) truncates to -25.

 LOG and LN: LOGARITHMS: Base 10 and Base e [LOG1/LN1]
10 PRINT "Program to demonstrate LOG (Base 10) Function":PRINT
20 A=1:B=10:C=100:D=0.0001:E=20.5:F=1234
30 PRINT LOG(A);LOG(B);LOG(C);LOG(D);LOG(E);LOG(F)

>RUN
0 .999998
1.99999 -3.99999 1.31175 3.09131

10 PRINT "Program to demonstrate LN (Natural Log) Function":PRINT

Page 10 - Vitrax-Plus Operations Manual

20 A=1:B=2.71828:C=100:D=0.0001:E=20.5:F=1234
30 PRINT LN(A);LN(B);LN(C);LN(D);LN(E);LN(F)

>RUN
0 .999998 4.60517 -9.21034 3.02042 7.11801

 ABS: ABSOLUTE VALUE Function [ABS1]
10 PRINT "Program to demonstrate ABS Function":PRINT
20 A=24:B=-24:C=24.75:D=-24.75:E=-.00374:F=0
30 PRINT ABS(A);ABS(B);ABS(C);ABS(D);ABS(E);ABS(F)

>RUN
24 24 24.75 24.75 3.73999E-03 0

 SQR: SQUARE ROOT [SQR1]
10 PRINT "Program to demonstrate SQR (Square Root) Function":PRINT
20 A=16:B=81:C=15625:D=4.5:E=0.374:F=0.00215
30 PRINT SQR(A);SQR(B);SQR(C);SQR(D);SQR(E);SQR(F)

>RUN
3.99999 8.99999 125 2.12132 .611555 .046368

 RND & RANDOMIZE: RND (n) returns a pseudo-random number of six significant digits from 0 to n inclusive. If n is
omitted, the range is o to 1. RANDOMIZE re-seeds the random number generator.

>PRI RND(22) 13.6474
>PRI RND .794064

DIRECT (OPERATING SYSTEM) COMMANDS

Direct commands are executed at the system (BASIC) prompt. They are similar to the operating system commands in
MS-DOS.

CONT: Continues program execution from a STOP or Cntl-C Command.

CNTL-C: Stops (breaks) execution of the current program

CNTL-P: Toggle Printer On/Off. Most useful for LISTing programs to a printer for hardcopy debugging. RUN toggles

CNTL-P to Off.

EPROM: Programs the contents of RAM to EPROM. See section Programming & Using EPROMs.

FRE FUNCTION: The FRE function helps keep track of the amount of unused RAM by monitoring the number of
bytes of RAM occupied by BASIC code statements. When FRE is invoked, it prints the number of bytes (decimal) from
the top of BASIC code to the bottom of the stack. While FRE does not include the space used by variable and POKEd
data, it helps estimate RAM usage. As code is generated, FRE continues to decrease. FRE is updated with each
<Enter>. To use this command, type FRE <Enter>. To estimate the total amount of remaining RAM memory, subtract the
memory used for variables, strings, arrays and POKEd data from the value of FRE. Variables use six bytes. Strings
require one byte per character plus six bytes of overhead.

LIST line #n,line #m: LISTs the current program to the console at connector J4 starting at line number n and ending
at line number m. LIST without line numbers LISTs the entire program. LIST followed by a single line number will LIST
the specified line. Examples are:

Vitrax Plus Operations Manual - Page 11

LIST Lists entire program
LIST 40 Lists Line 40
LIST 20,135 Lists program from line 20 to line 135
LIST ,55 Lists program from the beginning to line 55
LIST 85,9999 Lists program from line 85 to end of program

LOAD: LOADs the contents of EPROM (U7) to RAM (U8), usually for editing. It is most useful when a CRT console is
used and disk storage is not available.

NEW and NEW* initialize the interpreter. NEW clears all variables (while NEW* retains the current values), resets
stacks, disables interrupts INT1 and INT2, and sets the appropriate pointers. All RAM data is lost. Use a hardware reset
(switch SW1) when the reserved BASIC area is corrupted.

RUN: Executes the current program. See also XEQ.

XEQ: Executes the current program without zeroing variables

INPUT / OUTPUT COMMANDS

DATA value, value .. Sequential data for READ command
INP (I/O addr) Read data at <I/O addr>
INPUT var,var,... Input number(s) and text string(s) - (chnl 1 @ J3)
INPUT A$,B$,... Input a text string; no spaces - (chnl 1 @ J3).
INPUT LINE A$ Same as INPUT A$ but embedded spaces allowed
(LET) var = expr Assign value of <expr> to variable
OUT I/O addr, data Output 'data' to 'I/O addr'
PEEK addr Return the decimal value at (addr)
POKE addr, data Store data at addr
PRINT expr or ! Output <expr> at J3 for display; or <crlf> if no <expr>
LPRINT or ! Same as PRINT except output to printer at J6
READ var, var, ... Assign data to variables from a DATA table
RESTORE Returns the DATA statement pointer to initial value

DATA/READ and RESTORE: READ and DATA commands work in unison to input data sequentially from a
DATA statement to variables defined in a READ statement. This command pair provides a convenient way to furnish
constants to a BASIC program. The first READ obtains the first valve from the DATA statement; the second READ, the
second DATA value - continuing until the final READ. An error message occurs if the program contains more READs than
DATA values. RESTORE resets the DATA pointer to the initial DATA value. Place DATA statements before READs.

The following example of READ/DATA and RESTORE inputs data (the digits in the constant, PI) into two single-dimension
arrays, X and Y. Note that the RESTORE command (line 110) initializes the DATA pointer. Subsequent READs input the
same values into array 'Y' in reverse order - to show additional capability: [RD-DATA1]

 10 REM Program to Demonstrate READ/DATA and RESTORE Commands
 20 DATA 3,1,4,1,5,9,2,6,5,3,5
 30 DIM X(11)
 40 DIM Y(11)
 50 FOR I=1 TO 11
 60 READ X(I)
 70 NEXT I
 80 FOR J=1 TO 11

Page 12 - Vitrax-Plus Operations Manual

 90 PRI X(J);:NEXT J
100 PRINT
110 RESTORE
120 FOR K=1 TO 11
130 READ Y(12-K)
140 NEXT K
150 FOR L=1 TO 11
160 PRI Y(L);:NEXT L
170 STOP

 >RUN
 3 1 4 1 5 9 2 6 5 3 5
 5 3 5 6 2 9 5 1 4 1 3
 STOP AT LINE 170

INP (I/O addr): This function inputs data to a variable from an I/O address including the I/O registers in the CPU.
Syntax is Var=INP (I/O-addr). When this command is executed, the named variable contains the binary weight value
(decimal format) of all bits at the designated I/O-addr. To determine the value of a specific bit, mask the variable value
(use & operator) with binary weighted value of the specific bit. See the Digital I/O Map on page 25 and masking with &
opertor on page 17.

10 OUT 195,155 'Sets all I/O ports as inputs
20 X = INP (192) 'Reads value of port A
30 X1 = X & 16 'mask to read pin 2 on port A
40 IF X1 = 16 THEN PRINT "Bit 2 is high"
50 IF X1 = 0 THEN PRINT "Bit 2 is low"

INPUT: Inputs data from channel 1 at J3 (console channel):

10 INPUT A RUN
20 INPUT B6 ? 45 (If user types 45 at console, BASIC assigns A=45)

? 237.2 (If user types 237.2, B6=237.2 and continues execution)

At line 10, BASIC responds with a question mark. When a user types a number, it is assigned to variable A when <Enter>
is pressed. In this example, BASIC prompts with another question mark. The user then types in the value for variable B6.
Refer to the STRING Section below for rules governing the use of INPUT and INPUT LINE when defining string variables.

OUT I/O-addr, data: Use this function to output data directly to an I/O port address including the I/O registers in the
CPU. Syntax is OUT I/O-addr, data.

PEEK and POKE: Individual RAM memory addresses can be written with POKE addr, data byte and both RAM and
EPROM memory can be read with PRINT PEEK (addr) or var = PEEK (addr).

PRINT/LPRINT: The PRINT and LPRINT statements output information to the console channel (and the J6 printer
port) including the value of variables and expressions, data at specified memory locations, literal strings and string
variables. Quoted strings are output as they appear in the PRINT/LPRINT statements. Numbers are printed in decimal
format. Positive numbers are preceded by a space and negative numbers are preceded by a minus (-) sign. There is a
trailing space for all numbers. A semi-colon (;) at the end of a PRINT/LPRINT statement suppresses the usual return/line
feed.

10 PRINT "THIS IS A STRING" >RUN
20 A = 10 THIS IS A STRING
30 B = 20 10 PLUS 20 = 30
40 PRINT "10 PLUS 20 =";A+B

Vitrax Plus Operations Manual - Page 13

EXTERNAL INTERRUPT SIGNALS

INTERRUPT SIGNALS: The Vitrax Plus Controller provides four external interrupts: NMI and INT0, 1 and 2. NMI
is an low-going edge triggered Non-Maskable Interrupt. With no way to disable this interrupt, careful judgment should be
used before deciding to employ NMI. When invoked, NMI causes the program to vector to a pre-assigned address to
execute the user's NMI interrupt service routine. The incoming NMI signal should be conditioned to produce a single clean
low-going edge together with some external means to prevent the signal from interrupting itself until the service routine is
complete. If interrupt inputs overrun the routine, it is likely to produce a fatal stack overflow error. NMI is best used to
detect a serious or catastrophic condition that leads to system shutdown.
INT0, INT1 and INT2 are low-level triggered. Triggering signals to these inputs should be clean and momentary to avoid
multiple interrupts. If held low, these interrupts halt the processor.

INTERRUPT SOFTWARE: Vitrax BASIC includes six commands to service four external interrupt signals. Two
global commands turn interrupt inputs on (ENAable) and off (DISable) except for NMI which, by design, is non-maskable.
Additionally, I/O Register ITC (address 34H) operates in conjunction with the global commands to complete the
enabling/disabling process for INT0, 1 & 2

ITC Register Address: 34 hex 52 dec

BIT 7 6 5 4 3 2 1 0

NAME TRAP UFO - - - INT2 INT1 INT0

RESET 0 0 1 1 1 0 0 1

R/W R/W R - - - R/W R/W R/W

Use this table for ITC Register code for all enable/disable combinations of INT0, INT1 and INT2. Use OUT to set the bit
patterns and INP to read them.

 INT2 INT1 INT0 DATA (ITC REGISTER)
Dis Dis Dis 0 or 56
Dis Dis Ena 1 57
Dis Ena Dis 2 58
Dis Ena Ena 3 59
Ena Dis Dis 4 60
Ena Dis Ena 5 61
Ena Ena Dis 6 62
Ena Ena Ena 7 63

At the end of each BASIC command, BASIC checks for interrupt flags from INT0, INT1, INT2 and NMI. When an interrupt
signal is sensed, the program vectors to the line number in the associated OI (On Interrupt) command. The BASIC code at
the vectored line number should begin the interrupt service routine. Implementation follows the familiar GOSUB structure
ending with RETURN. The OI command format is:

 OI interrupt symbol line number Example: OI2 150
 | | (On Interrupt 2 --> line 150)
 | N = NMI |
 | 0 = INT0 |____ initial line number of the
 | 1 = INT1 interrupt service routine
 | 2 = INT2
 |

Examples:
OUT 52, 60 (set INT2 on and INT1, INT0 off)
PRINT INP(52) (Reads the status of INT0,1,2)

Page 14 - Vitrax-Plus Operations Manual

 |__ On Interrupt Command

Except for NMI, interrupts must be ENAbled to be detected. On RESET, INT0 is enabled; Interrupts 1 and 2 are disabled.
Interrupt handlers can be written in BASIC as subroutines, beginning with a DISable command to block additional signals
while the interrupt is being serviced. Next should be the specific application code to properly service the interrupt. Finally,
the routine should conclude with an ENAable and RETurn command. Since NMI is non-maskable, it is good practice to
include an OIN command and its subroutine. e.g. ENAble followed by a RETurn to allow the program to continue. Here is
a general procedure using On Interrupt Commands:

Enable appropriate interrupts ENAable for global enable plus
| OUT command to I/O register 52
| (dec) to selectively enable or
| disable INT0, 1, 2
| |

Set up ON INTERRUPT commands Format: OI[symbol] [line number]
for each enabled interrupt + NMI |

| |
| |

Create sub-routines for each ON INTERRUPT |
command: Begin each routine at line number |
specified in associated OI command |

 | |
| |

Temporarily DISable interrupts DISable
| |
| |

Place interrupt handling routine here (application specific interrupt code)
| |
| |

ENAble appropriate interrupts ENAble (or use I/O Reg 52 [dec])
| |
| |

RETurn to the main program RETurn

TEST PROGRAM FOR INTERRUPTS: The following program can determine if interrupts are functional.
Quickly brush a grounded test lead across an interrupt input pad on the board to emulate a single low pulse. Observe if
the appropriate message appears on the console as shown in lines 210, 260, 310 and 360.

PROGRAM TO TEST INTERRUPT DETECTION CAPABILITY [INTR1]

 10 OIN 200 'Set up GOSUB-type calls for
 20 OI0 250 'each interrupt

 30 OI1 300
 40 OI2 350
 50 OUT 52,63 'Enable INT0,1,2 via I/O Reg 52
 60 ENA 'Globally Enable all interrupts
 70 PRI "WAITING FOR INTERRUPTS"
 80 GOTO 70 'Two line main program (loop)
200 DIS 'GOSUB for NMI; Dis INT0,1,2
210 PRI:PRI"NMI RECEIVED" 'GOSUB for NMI; NMI detected
220 FOR I=1TO2000:NEXT I 'Pause 3 sec for NMI acknowledge
230 ENA 'Re-enable interrupts
240 RET 'Return to main program

Vitrax Plus Operations Manual - Page 15

250 DIS 'GOSUB for INT0; Disable INT0,1,2
260 PRI:PRI"INT0 RECEIVED" 'INT0 detected
270 FOR I=1TO2000:NEXT I 'Pause 3 sec for INT0 acknowledge
280 ENA 'Re-enable interrupts
290 RET 'Return to main program
300 DIS 'GOSUB for INT1; Disable INT0,1,2
310 PRI:PRI"INT1 RECEIVED" 'INT1 detected
320 FOR I=1TO2000:NEXT I 'Pause 3 sec for INT1 acknowledge
330 ENA 'Re-enable interrupts
340 RET 'Return to main program
350 DIS 'GOSUB for INT2; Disable INT0,1,2
360 PRI:PRI"INT2 RECEIVED" 'INT2 detected
370 FOR I=1TO2000:NEXT I 'Pause 3 sec for INT2 acknowledge
380 ENA 'Re-enable interrupts
390 RET 'Return to main program

LOGICAL & COMPARISON OPERATORS

COMPARISON OPERATORS: A set of the relational operators provides comparisons:

= equal to <= less than or equal to
> greater than >= greater than or equal to
< less than >< not equal to

LOGICAL OPERATORS: BASIC contains & (AND), @ (OR) and % (XOR) to change/detect the state of specific bits
within a byte, and to provide bit set/reset capability. Format: data byte operator data byte

 FUNCTION OPERATOR
AND &
OR @
XOR %

The & (AND) operator is typically used to determine the state of a bit within a byte. When a byte is ANDed with a mask
containing a '1' in a specific bit position, the bit value will appear in the result. Examples of masking and bit manipulation:

& (Bitwise AND) is typically used to determine the state of a bit within a byte. When a byte is ANDed with a mask that
contains a '1' in the specific bit position, the bit value appears in the result:

Position 7 6 5 4 3 2 1 0 EXAMPLE

Data Byte - 0 0 1 1 - - - A = 1 1 1 1 0 0 1 1 = 243

Mask - 0 1 0 1 - - - B = 0 1 0 0 1 0 1 1 = 75

Result - 0 0 0 1 - - - A & B = 0 1 0 0 0 0 1 1 = 67

A '1' is produced if and only if both bits are a "1". & can also be used to reset a bit (bit=0) with a '0' in the mask:

@ (Bitwise OR) is typically used to set a bit (bit=1)

Position 7 6 5 4 3 2 1 0 EXAMPLE

Data Byte - 0 0 1 1 - - - A = 1 1 1 1 0 0 1 1 = 243

Mask - 0 1 0 1 - - - B = 0 1 0 0 1 0 1 1 = 75

Result - 0 1 1 1 - - - A @ B = 1 1 1 1 1 0 1 1 = 251

A '1' is produced if one or both of the bits is a "1"

 % (Bitwise XOR): same as BOR but excludes the 1 OR 1 = 1 to produce 1 XOR 1 = 0

Page 16 - Vitrax-Plus Operations Manual

OTHER COMMANDS

CALL: Vitrax BASIC permits the use of embedded machine code routines. Control is transferred from BASIC code to a
machine language routine by a CALL Statement. This feature is useful to incorporate highly efficient code for time critical
routines. A CALL [address] statement transfers control to the machine language routine at [address]. CALL
automatically stacks the return address to BASIC and adjusts the stack pointer. Control is transferred by the interpreter
through execution of an internal jump instruction. Depending on the code in the machine code routine, pointers could be
modifie. In similar fashion, the values in the processor's general registers at the completion of the CALLed routine could
be unpredictable. under these conditions, the opening statements in the routine should stack or store data that needs to be
restored. Similarly, statements at the end of the CALLed routine should restore needed data, code or pointers before
surrendering control to Vitrax BASIC. The final statement in the routine should be a RET (RETI or RETN) to return control
to the BASIC statement following the CALL.

Machine code routines are best placed in user-protected memory space -- protected from BASIC's internal compaction
routines. Refer to Protected User Memory Space. earlier in this chapter:

DIMENSIONING ARRAYS: Vitrax BASIC accommodates single and double-dimensioned arrays. Arrays must be
dimensioned with the DIM statement using the format DIM [array variable]([column limit, row limit]). Arrays may be
dimensioned directly with numerical values or indirectly though variables. [DIM3 & DIM2]

 10 A=5 >RUN
 20 DIM X(A) X(1)= 2
 30 FOR I=1 TO A X(2)= 4
 40 X(I)=I*2 X(3)= 6
 50 NEXT I X(4)= 8
 60 FOR J=1 TO A X(5)= 10
 70 PRINT "X(";J;")=";X(J)
 80 NEXT J

 >RUN
 10 A=4:B=3 X(1 , 1)= 1
 20 DIM X(A,B) X(1 , 2)= 2
 30 FOR I=1 TO A X(1 , 3)= 3
 40 FOR J=1 TO B
 50 X(I,J)=I*J X(2 , 1)= 2
 60 NEXT J X(2 , 2)= 4
 70 NEXT I X(2 , 3)= 6
100 FOR K=1 TO A
110 FOR L=1 TO B X(3 , 1)= 3
120 PRINT "X(";K;",";L;")=";X(K,L) X(3 , 2)= 6
130 NEXT L X(3 , 3)= 9
135 PRINT
140 NEXT K X(4 , 1)= 4
150 STOP X(4 , 2)= 8

X(4 , 3)= 12

Note that variable A indirectly dimensions the single-dimensional array variable X, although a numerical value can be used.
The statements in lines 10 and 20 must appear before values are assigned to the array elements. Arrays can also be
double-dimensioned as shown in the second example with a 4 x 3 array. Keep in mind that arrays occupy significant
memory space.

FOR/NEXT (STEP): These statements are useful to perform repetitive operations for a prescribed number of times.
STEP is optional. If it is not included, a value of +1 is used. Starting and ending values of the FOR/NEXT loop are
included in the FOR statement by a counter variable. The loop is repeated when the NEXT statement is executed provided
the upper limit of the counter has not been reached. When the limit is reached, the program exits from the loop. BASIC

Vitrax Plus Operations Manual - Page 17

causes an error break if the variable in the NEXT statement is not the same variable used in the FOR statement.
FOR/NEXT loops may be nested, but BASIC will report an error if the nesting level exceeds eight deep. A FOR loop is
executed at least once, even if the initial value of the counter variable exceeds its bounds.

The following program prints odd integers less than l00.

10 N=l00 :REM UPPER LIMIT
20 FOR I=I TO N STEP 2 :REM START AT l WITH STEP OF 2
30 PRINT I :REM PRINT A NUMBER
40 NEXT I :REM REPEAT (at Line 20)

GOSUB Subroutines: GOSUB instructions are useful when an operation is required at more than one place in a
program. Rather than write the routine at each location, a GOSUB command is used to "call" a subroutine. After the
subroutine executes, a RETURN instruction (the last instruction in the subroutine) causes the program to resume execution
at the line number following the GOSUB instruction.

IF/THEN: This instruction allows program control to be modified by a logical test condition. The test condition follows
the IF clause of the statement. When the test condition is true (non-zero), the THEN portion of the statement will be
executed. When the test condition is false (zero), the THEN portion is ignored and execution continues at the next
numbered line of the program.

 50 IF X > J THEN GO TO l40

STOP: Although STOP is not required to end a program, it can be useful as a breakpoint for program debugging. When
a STOP is encountered, a stop message and its line number is printed. BASIC returns to direct mode where PRINT
statements can be used to determine variable values. Multiple STOP statements are allowed. By removing STOP
statements one by one, a program can be tested in sections until debugging is completed. Program execution may be
continued by a direct CONT command.

RUN executes the current program. Execution begins at lowest line number and proceeds sequentially by ascending line
number except for branching commands, such as GOTO and GOSUB, that alter the order of execution.

STRING MANIPULATION COMMANDS

STRING ASSIGNMENT: Vitrax BASIC handles both text and numeric strings up to 200 characters long. Text
strings can be converted to numeric strings and vice versa. Strings can be analyzed and manipulated with LEN, MID$,
LEFT$, RIGHT$ and INSTR. Text strings require quotation marks when defined within a program. Numeric format must
be used for calculations. (use VAL command). Strings can be joined with the "+" operator or with a sequence of
"PRINT;" commands. String commands are listed and cross referenced at the end of this section.

ASC(str): Returns ASCII decimal value of the first character in (str).
CHR$(x): Returns an ASCII character by converting x (decimal) to ASCII
INPUT A$: Inputs text string(s), no embedded spaces allowed.
INPUT LINE A$Same as INPUT(A$) but embedded spaces allowed
INSTR(x,A$,B$) Searches for B$ in A$; returns beginning position of B$ (or 0)
LEFT$(A$,n) Returns a string from character position 1 to n in A$
LEN(A$) Returns the number of characters in A$
MID$(A$,C,n) Returns a string of n characters beginning at character position C
NUM$(x) Converts the number x to a string with a leading and trailing space

Page 18 - Vitrax-Plus Operations Manual

RIGHT$(A$,n) Returns a string from character position n to the end of string A$
STRING$(n,d) Returns a strings of n ASCII characters whose decimal value is d
VAL(A$) Converts text string to numeric value
+ To concatenate (join) strings

 ASC Function [ASC1] 10 Program to test ASC Function
20 A$="ALPHA":B$="BETA" >RUN
30 A=ASC(A$):B=ASC(B$) 1st Character of A$ = 65
40 PRINT "1st Character of A$ =";A 1st Character of B$ = 66
50 PRINT "1st Character of B$ =";B

CHR$ Function [CHR1] 10 X$=CHR$(65):Y$=CHR$(66):Z$=CHR$(49)
20 PRINT "CHR$(65) =";X$;" CHR$(66) =";Y$;" CHR$(49) = ";Z$

>RUN
CHR$(65) =A CHR$(66) =B CHR$(49) = 1

INPUT and INPUT LINE input numbers and text strings from console channel (#1). Text strings can be
upper/lower case with letters and digits intermixed. Rules for their use - and examples follow:

 NUMBER QUOTATION EMBEDDED
 VARIABLES MARKS SPACES
 INPUT: Multiple optional only with quotation marks
 INPUT LINE: One treated literally allowed

 COMMAND CONSOLE INPUT CONSOLE OUTPUT as A$
 INPUT A$ VITRAX PLUS VITRAXPLUS
 VitraxPlus VitraxPlus
 "Vitrax Plus" Vitrax Plus
 INPUT LINE A$ VITRAX PLUS VITRAX PLUS

Vitrax Plus Vitrax Plus
"VITRAX PLUS" "VITRAX PLUS"

LEN, LEFT$, MID$, RIGHT$, INSTR Commands [STRING1]
 10 PRINT "String Commands Examples: LEN, LEFT$, MID$, RIGHT$, INSTR"
 30 A$="ABCDEFGHIJ":B$="HI"
 50 L=LEN(A$)
 60 P$=LEFT$(A$,3)
 70 Q$=MID$(A$,3,4)
 80 R$=RIGHT$(A$,4)
 90 S=INSTR(1,A$,B$)
100 PRINT "This is the value of A$: ";A$
110 PRINT "Length of A$: ";L;" characters"
120 PRINT "3 left characters of A$: ";P$
130 PRINT "Mid 4 characters begin at #3 : ";Q$
140 PRINT "Right characters begin at #4 : ";R$
150 PRINT "B$ ('HI') in A$ begins at : ";S;"character position"

>RUN
Program to Test String Commands: LEN, LEFT$, MID$, RIGHT$, INSTR
This is the value of A$: ABCDEFGHIJ

Vitrax Plus Operations Manual - Page 19

Length of A$: 10 characters
3 left characters of A$: ABC
Mid 4 characters begin at #3 : CDEF
Right characters begin at #4 : DEFGHIJ
B$ ('HI') in A$ begins at : 8 character position

 NUM$ and VAL: Text/Numeric Conversiona [NUMVAL1]
 10 REM Program to test NUM$ and VAL String Functions:PRINT

 20 A=123.4
 30 A$=NUM$(A)
 40 PRINT "Convert A (";A;") to a numeric string, A$ = ";A$

 50 PRINT "Print the length of A$ (";A$;") =";LEN(A$);" characters"
 60 PRINT "Note that A$ contains";LEN(A$);" characters, not";LEN(A$)-2;" which"
 70 PRINT " indicates a leading and trailing zero."

 90 PRINT "Using ASC to confirm 1st & last characters are ASCII 32 (spaces):"
100 PRINT "The leading character is an ASCII (decimal)";ASC(LEFT$(A$,1))
110 PRINT "The last character is an ASCII (decimal)";ASC(RIGHT$(A$,1))
120 PRINT:PRINT "Convert A$ to numeric value, B:"
130 B=VAL(A$)
140 PRINT "Print values of B and B x 2 (to prove B is numeric):";B;" and ";B*2

>RUN
Convert A (123.4) to a numeric string, A$ = 123.4
Print the length of A$ (123.4) = 7 characters
Note that A$ contains 7 characters, not 5 which
 indicates a leading and trailing zero.
Using ASC to confirm 1st & last characters are ASCII 32 (spaces):
The leading character is an ASCII (decimal) 32
The last character is an ASCII (decimal) 32
Convert A$ to numeric value, B:
Print values of B and B x 2 (to prove B is numeric): 123.4 and 246.8

 STRING$ Function to Fill a String [STRING4]
10 REM Program to test STRING$ Command
20 N2=2:N5=5:N8=8:D1=65:D2=66:D3=49
30 A$=STRING$(N2,D1)
40 B$=STRING$(N5,D2)
50 C$=STRING$(N8,D3)
60 PRINT:PRINT "Print a String of 2 'A's : ";A$
70 PRINT "Print a string of 5 'B's : ";B$
80 PRINT "print a string of 8 '1's : ";C$

>RUN
Print a String of 2 'A's : AA
Print a string of 5 'B's : BBBBB
Print a string of 8 '1's : 11111111

 CROSS-REFERENCE OF STRING MANIPULATION COMMANDS

 FROM TO USE
Text string Numeric string VAL(A$)
Numeric string Text string NUM$
ASCII Character Decimal Number ASCII
Decimal value ASCII Character CHR$
Multiple strings Single string + or PRINT;
Single string Multiple strings LEFT$, MID$, RIGHT$

Page 20 - Vitrax-Plus Operations Manual

TRIGONOMETRIC FUNCTIONS

Four trigonometric functions are available to calculate sine, cosine, tangent and arctangent values. Parameters for these
functions must be supplied in radian units, but many applications prefer the use of degrees. To use degrees in these
functions, multiply the value in degrees by PI/180. For example:

 SIN, COS, TAN and ATN Functions [TRIG2]
 10 A=30*PI/180:B=1.0 >RUN
 20 PRINT "SINE OF A = ";SIN(A) SINE OF A = .499999
 30 PRINT "COSINE A = ";COS(A) COSINE A = .866025
 40 PRINT "ARCTAN B = ";ATN(B)*180/PI ARCTAN B = 44.9999

** DIGITAL I/O LINES **

The 24 digital I/O lines provided by an 8255A parallel peripheral interface are programmable as latched inputs or outputs.
The lines are grouped as four ports, shown below as A, B, C-upper and C-lower

PORT NUMBER J7 CONNECTOR
NAME OF BITS PIN NUMBERS

 bit 7 bit 0
A 8 18 8* 4* 2* 6* 10* 12* 14*
B 8 36 40 44 48 50 46 42 38

 C-lower 4 - - - - 34 32 30* 28*
 C-upper 4 20 22 24 26 - - - -
 * = lines shared with printer port

CONFIGURING THE 8255A: There are 16 input/output arrangements for the three ports of the 8255A. An OUT
195,[data byte] command will configure the direction of the 24 digital lines as shown below:

COMMAND PORT A PORT B PORT C-lower PORT C-upper
addr,data byte PA0-7 PB0-7 PC0-3 PC4-7
OUT 195,128 OUT OUT OUT OUT

 129 OUT OUT IN OUT

 130 OUT IN OUT OUT

Vitrax Plus Operations Manual - Page 21

 131 OUT IN IN OUT

 136 OUT OUT OUT IN

 137 OUT OUT IN IN

 138 OUT IN OUT IN

 139 OUT IN IN IN

 144 IN OUT OUT OUT

 145 IN OUT IN OUT

 146 IN IN OUT OUT

 147 IN IN IN OUT

 152 IN OUT OUT IN

 153 IN OUT IN IN

 154 IN IN OUT IN

 155 IN IN IN IN

PROGRAMMING DIGITAL I/O LINES: Each port (A, B and C) has a single I/O address. with eight I/O lines
per port. Each bit in the port corresponds to an individual I/O line. So, it is possible, in binary fashion, to manipulate each
line or combination of lines. For example, assume port B is configured as an output. It terminates at edge connector J7,
pins 36-50:

J7 CONNECTOR PIN # 50 48 46 44 42 40 38 36 - - -

U15 SIGNAL NAME PB3 PB4 PB2 PB5 PB1 PB6 PB0 PB7

BIT VALUE FOR PIN HIGH 8 16 4 32 2 64 1 128

EXAMPLES (using the above diagram):
 To bring all lines to a low (logic '0') state: OUT 193,0
 To bring all lines to a high (logic '1') state: OUT 193,255
 To assert I/O pin 38 high (all others low): OUT 193,1
 To assert I/O pin 50 high (all others low): OUT 193,8
 To assert both I/O pin 38 & 50 high (all others low): OUT 193,9

 I/O CONNECTOR J7 PINOUT AND SIGNALS

J7 8255A 8255A OUT Command Printer P3 Conn

Pin # Pin # Signal Port,Data byte Signal Pin #

 2 40 PA4 * OUT 192,16 D5 15

 4 39 PA5 * ,32 D6 13

 6 1 PA3 * , 8 D4 17

 8 38 PA6 * ,64 D7 11

 10 2 PA2 * , 4 D3 19

 12 3 PA1 * , 2 D2 21

Page 22 - Vitrax-Plus Operations Manual

 14 4 PA0 * , 1 D1 23

 16 no connect --

 18 37 PA7 ,128

 20 10 PC7 OUT 194,128

 22 11 PC6 ,64

 24 12 PC5 ,32

 26 13 PC4 * ,16 STB/ 25

 28 14 PC0 * , 1 ACK/ 7

 30 15 PC1 * , 2 BSY 5

 32 16 PC2 , 4

 34 17 PC3 , 8

 36 25 PB7 OUT 193,128

 38 18 PB0 , 1

 40 24 PB6 ,64

 42 19 PB1 , 2

 44 23 PB5 ,32

 46 20 PB2 , 4

 48 22 PB4 ,16

 50 21 PB3 , 8

 odd numbered pins are grounded Gnd 14-26

* denotes 8255A pins shared with printer connector

DIGITAL I/O MAPPING: A logical-to-physical map will result in an organized wiring approach and an easier
programming effort. It should begin with the port assignments and pin numbers of the J7 I/O Connector followed by each
I/O port. For example, Port A controls I/O pins 2, 4, 6, 8, 10, 12, 14 and 16. Next, the map should include the binary value
that is necessary to assert each pin high. For example, for Port A I/O pin 6, the necessary bit value is 8. Finally, for path
continuity, signal names and pin numbers at the 8255A device (U15) should be added that correspond to each I/O pin. For
example:

DIGITAL I/O MAP

PORT B PORT C-lwr PORT C-upr PORT A

ADDRESS =193 ADDR=194 ADDR=194 ADDRESS = 192

J7 Pin # 50 48 46 44 42 40 38 36 34 32 30* 28* 26* 24 20 18 16 14* 12* 10* 8* 6* 4* 2*

Bit Value 8 16 4 32 2 64 1 128 8 4 2 1 16 32 64 ** 128 N 1 2 4 64 8 32 16

U15 Pin # 21 22 20 23 19 24 18 25 17 16 15 14 13 12 11 10 37 N 4 3 2 38 1 39 40

U15 Name PB PB PB2 PB PB PB PB PB PC PC PC1 PC PC PC PC PC PA - PA PA PA PA PA PA PA

 * denotes 8255A pins shared with printer connector

Vitrax Plus Operations Manual - Page 23

** SERIAL I/O CHANNELS **

The Vitrax PLUS Controller provides versatile serial communication capability with two independently programmable full
duplex channels. It can communicate directly with a wide variety of DCE and DTE RS-232 devices. Both channels are
configured and controlled by I/O registers in the main processor and supported by software in the BASIC ROM.

GENERAL INFORMATION: Transmitting and receiving data involve writing and reading I/O registers and validating
status bits. Both operations are double buffered for data integrity. In the receive mode, a data byte from the serial bit
stream is collected in a primary I/O register; then a status flag is set and the byte is transferred to a holding register until
the controller's data bus is available and the program calls for data. Meanwhile, the next byte can be assembled in the
primary register. In the transmit mode, the data byte is transparently serialized and formatted; a status flag is set when
the byte is shifted out through a second I/O register to the connected equipment.

Before any transmission can occur, serial parameters must be set including baud rate, data and stop bits, parity and flow
control. ViTRAX BASIC simplifies most of the configuration and provides concise commands for receiving and transmitting
data.

USING THE PRIMARY (CONSOLE) SERIAL CHANNEL

The main serial channel, #1, at connector J3 serves as the primary console interface. It is designed for a three-wire cable
arrangement (Rx, Tx and ground) to connect to a serial port on a personal computer or CRT terminal during program
development. After power-on or reset, Vitrax BASIC matches the console's baud rate when <Enter> on the keyboard's
terminal is pressed three times. Three configuration parameters are fixed by ROM software: no parity, 7 stop bits and 1
stop bit (N,7,1). During program development, input is received from the console's keyboard in full duplex mode. Output
to the programming console also occurs when PRINT and LIST commands are executed.

When program development is complete and application code is in EPROM, this channel can be assigned to other uses.
The AutoStart mode, with application code in EPROM (U7), automatically defaults to a 9600, N, 7, 1 initialization.
Configuration, status and data flow are contolled by I/O registers CNTLA, CNTLB and STAT at I/O addresses 01, 03,
05. These registers can be used to reprogram the configuration parameters.

Data is be transmitted with an OUT 7, databyte or PRINT command and received with an INP 9 function. For your
reference, outgoing data is written to the TDR register at 07 and doubly buffered in TSR . Incoming data is similarly
handled. It is buffered in RSR and fed to RDR at 09 for processing. Refer to the Supplement Section or the manual
described in the Machine Code Section.

USING THE SECONDARY SERIAL CHANNEL

The secondary channel (#0) can be programmed in different ways depending on the connected equipment and the
application. This channel uses a register configuration similar to Channel #1 while supporting Rx, Tx, RTS, CTS and
DCDO signals. Software support exists in the BASIC ROM to configure transmission parameters and receive data
automatically into a predefined buffer. A FIFO algorithm is used to retrieve the buffered data. The CPU I/O registers that
manage the serial channels are summarized in the 'Reference Material' section along with the corresponding hardware
information.

HARDWARE ARRANGEMENT: Interpretation of RS-232 communication standards can often be
ambiguous. Pin definitions depend on whether equipment is configured as Data Terminal Equipment
(DTE) or Data Communication (DCE). Most of the confusion involves the choice of pins for Receive
(Rx) and transmit (Tx). Since Rx and Tx signals may need to be transposed, jumper block W8 is provided.
If data is received on pin 2 and transmitted on pin 3, install both jumper blocks on W8 in the horizontal

Page 24 - Vitrax-Plus Operations Manual

position. Conversely, if incoming data is received on pin 3 and outgoing data transmitted on pin 2, install
both jumper blocks on W8 in the vertical position.

INCOMING OUTGOING W8 JUMPER BLOCK
PIN NUMBER PIN NUMBER POSITION

2 3 Both Horizontal
 3 2 Both vertical

 TRANSMIT PATH:

 DATA BUS TDR
Register
 Addr 06

TSR
Register

U1-TXA0
 Pin 45

U13
pin 6
 to 7

Jmpr W-8
pin 1 to 3

DB9-3 or DB9-2
(if W8 (if W8

 1 to 3) 1 to 2)

RECEIVE PATH:

 DB9-3 or DB9-2
 (if W8 (if W8
 3 to 4) 2 to 4)

 Jmpr W-8 U12
 pin 4
 to 6

 U1-RXA0
 Pin 46

RSR
Register
Addr 08

RDR
Register

DATA BUS

 For secure Operation, DCD0 should be grounded and RTS bit 4 (CNTLAO at I/O address 00) reset to 0. See Jumper
Table for W9 setting and pc board trace at W9.

CONFIGURATION: Before a serial channel can be put into operation, its transmission parameters must be defined.
Memory locations have been allocated and reserved for baud rate, number of data and stop bits, parity/no-parity, parity
type and transmission mode. To configure this channel, simply POKE the appropriate data byte into the memory location
reserved for each parameter. The following table specifies the location for each communication parameter and the data
associated with it: Example: to set the baud rate to 9600, use the command POKE 65409,2. Refer also to the
programming example just before the Summary Section.

CONFIGURATION
PARAMETER

MEMORY LOCATION
 Decimal Hex

DATA

 Baud Rate 65409 FF81 1=19200 2-9600 3=4800 4=2400 5=1200 6=600 7=300

 Data Bits 65410 FF82 7=7 data bits; 8=8 data bits

 Parity Enable 65411 FF83 0 for no parity; 1 to enable parity

 Parity Type 65412 FF84 0=odd parity; 1= even parity

 Stop Bits 65413 FF85 1=1 stop bit; 2=two stop bits

 Protocol 65414 FF86 0 for X-0n/X-off; 1 for RTS handshaking

If you plan to transfer ASCII data, the use of X-ON/X-OFF protocol may be more helpful. When binary data is involved, or
hardware control via RTS/CTS is employed, select "1" as the transfer format.

DATA BUFFER and its SETUP: Vitrax BASIC contains routines to configure and manage data flow through this
channel. This routine simplifies use of the second serial channel (0) to receive data... Once the configuration parameters
are stored, this routine, CALLable from BASIC, establishes a 128-byte FIFO buffer to receive data. Its operation is
interrupt-driven to automatically receive data in background mode and place it in the buffer. It also organizes the buffer for
easy access by BASIC while optimizing the space for new data. CALL 8208

Vitrax Plus Operations Manual - Page 25

BUFFER STATUS BYTE: Memory address 65408 is reserved as a status byte to indicate when data is present in the
buffer. When data exists, the flag address contains 85 decimal (55 hex) - zero when empty. BASIC can use its PEEK
function to determine if data is in the buffer: LET A=PEEK(65408).

BUFFER ACCESS ADDRESS: The first buffer address (65280) is also the transfer address for BASIC to obtain each
byte of incoming data. For simplified operation, BASIC need PEEK at only this address to fetch the oldest byte from the
buffer: LET B=PEEK(65280).

BUFFER MANAGER: The buffer manager is a CALLable routine that shifts buffered data toward the exit location
(65280) after BASIC fetches a character. After taking each byte, BASIC should CALL the buffer manager to place the
next byte at the transfer address and automatically shift each byte in the buffer by one address toward the access address.
It should be called each time a character is removed from the access location: CALL 8408

This routine also initiates an X-ON or RTS (high) signal when there is room in the buffer for incoming data. If X-ON/OFF
protocol is selected to control data flow, an X-OFF character is transmitted when the buffer is filled to within 10 characters
of the top. Ten additional characters can be received, but additional characters are lost. X-ON is issued when the buffer
has room for at least 20 characters. When RTS is selected, the RTS signal (J4-7) drops to a low signal state when the
buffer is within 10 characters from the top. Ten additional characters can be received before the buffer is full, but
additional characters are lost. RTS is raised high when the buffer has room for 20 characters.

TRANSMITTING THROUGH THE SECOND SERIAL CHANNEL: Up to this point most of the discussion
has centered around receiving data. The configuration of the RS-232 port serves for both reception and transmission. In
its simplest form, transmission can be performed with a one-line BASIC routine: OUT 6, data byte. There are three
register bits that can affect data transmission:

* The Transmit Enable flag (TE): Bit 5 in Register 0 must be set=1 to enable transmission. The Port Setup routine
automatically enables this bit.

* The Transmit Data Register Empty (TDRE) flag: Bit 1 in Register 4. When TRDE=1, the Transmit Data
Register (6) is empty and the next data byte can be written to it. TDRE is momentarily cleared (0) while the byte in
TDR is moved to TSR for output; and then set active to 1 again.

* The Clear-To-Send flag (CTS): Bit 5 in Register 2. When read, the CTS bit reflects the state of the CTS signal
at connector J4-8. The incoming signal is inverted by U12 before appearing in Register 2 bit 5 as the CTS status bit.
For transmission to occur, the CTS signal must be high. The CTS flag is read as 0. When the external CTS signal is
low (not clear to send), the CTS bit is read as 1 causing the TDRE bit to be held at 0 which halts transmission. (This
register bit is important only when CTS handshaking is used. Otherwise, resistor pullup R9 at U12-10 permanently
places CTS0 in the active state. Be certain to remove R9 when using hardware handshaking signals).

The TDRE flag can be polled by:
10 A=INP(4) 'read Control Reg 4
20 B=A & 2 'check bit 2 (TDRE)
30 IF B=O GOTO 10 'loop back if bit 2 low
40 OUT 6, data byte 'xmit data byte
50 GOTO 10 'go back for next byte

PROGRAMMING EXAMPLE: The following example uses BASIC code to configure the second serial channel
and to receive data using the data buffer and manager. The example assumes that a CRT terminal, connected to J4,
transmits keystrokes for display on the programming console attached at J3: [RS232-V2]

 10 POKE 65409,2 Set baud rate to 9600
 20 POKE 65410,8 Set data bits to 8

 30 POKE 65411,0 No parity
 40 POKE 65413,1 1 stop bit

Page 26 - Vitrax-Plus Operations Manual

 50 POKE 65414,0 Use X-on/X-off protocol
 70 CALL 8208 Create incoming buffer
 80 LET A=PEEK(65408) See if data is received by polling Status Byte
 90 IF A=0 THEN GOTO 80 Wait on received data
100 LET B=PEEK(65280) Have data - fetch character into B
110 CALL 8408 Shift all data down in buffer by one location
120 OUT 7,B Output character to console
125 IF B=13 THEN OUT 7,10 Output LF after CR to console via J3 - Chnl #1
128 IF B=13 THEN GOSUB 200 On CR branch to send confirming message
130 GOTO 80 Get more data
200 OUT 6,79:OUT 6,46:OUT 6,75:OUT 6,46 Send "O.K." message to terminal at J4
210 OUT 6,13 Xmit CR to sending terminal at J4
220 RETURN Return to get more data

Lines 125, 128 and 200-220 are embellishments to the fundamental code. Line 125 sends a line feed after a carriage
return to compensate for the typical configuration of the programming console (CR only vs CRLF). Delete this line if the
received messages are double spaced. Line 128 looks for an incoming CR on the console and, when found, jumps to the
GOSUB routine at lines 200-220 to create and transmit an "O.K" message back to the sending terminal.

SUMMARY: Here is a summary of the procedure to configure
and use the second serial channel:

1. Connect a cable between the external serial equipment and
connector J4. Example: a 3-wire cable supporting Tx, Rx and
GND (J4-2, 3 & 5).

2. Place two jumper blocks on W8 for proper RX and Tx arrangement. Install both blocks in either the horizontal or
vertical position. Refer to the Jumper Table and Schematic Diagram.

3. For stability, DCD0 is pulled low by a +5 volt trace to the inverted DCD0 signal at W9. To use DCD0, cut the trace
between the pins of W9 and place jumper blocks on the appropriate pins at W9.

4. When the CTS0 signal is not used in an application, it is normalized by resistor R9 that pulls the inverted CTS0 signal
high at U12-10. When using CTS0, remove this resistor (R9).

5. Set baud rate, parity, data and stop bits, and transfer format using POKE and the reserved memory locations described
under Configuration above - or use I/O registers 0, 2 and 4 described below.

6. Write code to handle data transmission: Set up buffer, monitor Status Byte, fetch data at Access Location, shift buffer
data by CALLing Data Manager. Transmit Data with OUT 6, databyte command. See software support section.

REFERENCE MATERIAL

OVERVIEW OF THE CONTROL REGISTERS: Both channels have similar configuration capability. Hardware
support is provided for RTS, CTS and DCD for channel #0. Three registers are provided to configure each channel. Two
additional register pairs, TSR and RSR, handle the incoming and outgoing data for each channel.

 ---I/O ADDRESS---
 REGISTER CHNL #0 CHNL #1

STAT 04 05
CNTLA 00 01
CNTLB 02 03
TDR 06 07
TSR - -
RDR 08 09
RSR - -

Vitrax Plus Operations Manual - Page 27

A 32Kx8 Static RAM is required for this
application in socket Z8 along with the
use of the RAM space FF00 to FF89.

REGISTER SETTINGS - SECONDARY CHANNEL: For most applications, some simplifying assumptions can
be made about the software settings for the serial interface. For complete register information, refer to the Supplement
Manual -- or to the optional Machine Code Programmer's Manual.

STAT0 Register Address: 04 hex 04 dec

 BIT 7 6 5 4 3 2 1 0

NAME RDRF OVRN PE FE RIE DCD0 TDRE TIE

 RESET 0 0 0 0 0 - - 0

 R/W R R R R R/W R R R/W

SUGGESTED SETTING - - - - 0 - - 0 = 0

 CNTLA0 Register Address: 00 hex 00 dec

 BIT 7 6 5 4 3 2 1 0

NAME MPE RE TE RTS0 MPBR/EFR MOD2 MOD1 MOD0

 RESET 0 0 0 1 - 0 0 0

 R/W R/W R/W R/W R/W R/W R/W R/W R/W

SUGGESTED SETTING 0 1 1 0 0 1 0 0 100 for 8 data bits
 (1 Stop bit/no parity) 0 0 0 96 for 7 data bits

 CNTLB0 Register Address: 02 hex 02 dec

 BIT 7 6 5 4 3 2 1 0

NAME MPBT MP CTS/PS PEO DR SS2 SS1 SS0

 RESET 0 - 0 0 1 1 1 1

 R/W R/W R/W R/W R/W R/W R/W R/W R/W

SUGGESTED SETTING 0 0 0 0 1 0 0 0 = 8 9600 Baud
 0 0 1 = 9 4800 Baud
 0 1 0 = 10 2400 Baud
 0 1 1 = 11 1200 Baud
 1 0 0 = 12 600 Baud
 1 0 1 = 13 300 Baud

HIGHER BAUD RATES: CNTLB0 at ADDR 02, shown above, can be reprogrammed for higher baud rates.
When DR, bit 3 = 0, baud rates from 600 to 38400 can be used. The following tables lists the CNTLB0 values for all baud
rate settings. Alternative values exists in the center portion of the table:

 BAUD RATE CNTLB0

 38400 0

 19200 1

 9600 2 or 8

 4800 3 or 9

 2400 4 or 10

Page 28 - Vitrax-Plus Operations Manual

 1200 5 or 11

 600 6 or 12

 300 13

 150 14

For parity error detection, check Bit 5 in STAT0 at I/O address 04 for "1". To reset the bit, write 0 to Bit 3 in CNTLA0 (I/O
Addr 00) masking other bits to preserve their values. Reminder: when using parity, it is necessary to:

 Enable Parity Bit 1=1 CNTLA0 I/O ADDR 00
Poll Parity Error Flag Bit 5=1 STAT0 04
Reset Parity Flag Bit 3=0 CNTLA0 00

(Mask other Bits When Writing to These I/O Registers)

** MACHINE CODE PROGRAMMING **

The 64180 microprocessor used in the Vitrax PLUS Controller contains a full set of machine code instructions that are a
super set of the Z-80 instructions. The BASIC Interpreter uses these instructions to execute user written application
programs. Most users prefer that BASIC transform their program logic to the required machine code. There may be
times, however, when a short program in machine language is desirable or necessary. Usually speed of execution is the
issue.

The use of assembly level and machine code programming involve major considerations on the part of the user.
Programming in assembly level mnemonics often requires relatively expensive and complex support tools. While this type
of support is available, its cost, familiarization burden and time consuming use may rule out total assembly level language
programs where money and time considerations are important. Fortunately, the popularity of the Z-80 has been
responsible for an abundance of code that is readily adaptable to the 64180.

Short machine code programs are another story. These programs - brief hand coded subroutines - can fit neatly into the
Vitrax PLUS Controller concept using BASIC CALL statements to incorporate them into the main BASIC program.
Machine code can be POKEd into memory or READ in from DATA statements. Programmers who have achieved
reasonable fluency in assembly level and machine code programming may wish to consider using these features of the
BASIC Interpreter. If your experience involves only high level languages, the choice of machine coded routines may be
marginal. To support machine code subroutines, CALL and POKE support is built into the Vitrax PLUS Controller.

Two data books may help you to expand the capability of the Controller in this area: A hardware oriented user's manual
and a programmer's software manual. They contain detailed summaries of the 64180/Z80 instruction set emphasizing the
additional commands accommodated by the 64180. Also included are pinouts, signal and status line definitions , register
descriptions, clock cycles per instruction, and timing diagrams. All internal registers are discussed including configuration
options for I/O registers. Excellent documentation for experienced programmers.

The current hardware and software manuals are available as an accessory package from your Controller dealer. Ask for
Machine Code Manuals for the 64180.

** VITRAX SYSTEM MONITOR **

Vitrax Plus Operations Manual - Page 29

This section describes the operation of the Vitrax System Monitor (VSM) contained in the Vitrax BASIC ROM. VSM can
help you develop callable machine code software to speed up critical subroutines and to condense system code. It has the
ability to inspect and change memory., to set and execute to breakpoints, and to display CPU registers. VSM can also
generate relocatable precise delay routines and test the RAM memory on your Vitrax PLUS Controller. Four basic
functions are incorporated:

1. DEBUG/EDIT OPERATIONS: Machine code development and debug tools
2. TIMER-COUNTERS: Use of timer-counters as interval timers
3. RAM MEMORY DIAGNOSTICS: RAM memory diagnostics
4. HEX / DECIMAL CONVERSIONS: Decimal/Hex & Hex/Decimal conversion routines

To use the Vitrax System Monitor, connect a CRT terminal or computer with serial port and communication software to the
Controller at J3. Boot the Vitrax PLUS Controller in the usual manner using three or four <Enter> keystrokes to set the
baud rate and generate the BASIC sign-on message.

DEBUG / EDIT OPERATION: At the system prompt, type 'CALL 10700 <Enter>' to access the VSM main
menu. Type the code letter that corresponds to the desired function.

SUMMARY OF DEBUG/EDIT COMMANDS
D Display
M Modify
B Block Move
S Set Breakpoint
R Remove Breakpoint
E Execute a program
X Examine CPU Registers
V Verify two blocks of memory
Q Quit DEBUG Operation

DISPLAY: The Display function provides a Hex/Ascii block display of memory contents. When D is entered, the VSM
prompts for the starting display address. Use four-digit hex format. Respond either N or Y about modifying the contents:

N: The monitor asks for the block size to display. <Enter>, without a size input, continually displays and scrolls memory
contents until a keystroke is entered. Each byte is displayed as two hex digits, grouped 16 per line, followed by the ASCII
values - or a dot for non-displayable characters.

Y: The monitor displays the selected address, current contents and a message "Enter two digit hex value followed by
return - space to leave unchanged" followed by "New Data:". Type the new data (hex) then <Enter> - or hit <space> to
leave data unchanged. The monitor prompts for the next address ... and the display-modify sequence begins again. For
the menu press <esc>.

MODIFY: If M is entered, the monitor asks for the starting hex address to begin modifications and type of input.
Response with A (Ascii) or H (hex).

A: Ascii characters from the keyboard are placed in memory, location by location, until the <Esc> key is struck. A null (00
hex) is added to the next location. The reason: if you are entering text to be display on the screen, you can write a simple
routine to point at the first character and output continually until a null is detected. If a null is not wanted, it can be easily
removed with the Display-with-Modify command.

H: Enter two-digit hex values followed by a space or <Enter> to complete the modification and advance to the next
address. This mode is useful when keying in machine code. To end the sequence and return to the main menu, press
<Esc>.

Page 30 - Vitrax-Plus Operations Manual

BLOCK MOVE: This routine moves (actually copies) data from one memory area to another. The original block of
data remains intact at the original address. After B is selected, enter the starting hex address of the block in RAM or
EPROM memory (four digits) and <enter> - followed by the destination address in either RAM (or EPROM memory) as
four hex digits and <enter> - and then the number of bytes to be moved - then <Enter>. This routine can transfer code for
EPROM to RAM for debugging. With the hardware capability of the Controller, this command can be used to program
code into EPROM at U7. Two prerequisites are necessary: Connect the Vpp Power supply to connector J1; and
reprogram the CPU Wait State Register with the BASIC command OUT 50,240 before entering the Block Move
Command. When the block move is complete, exit the monitor and return the Wait State Register to its original state with
the command OUT 50,48.

BREAKPOINT: Type the address where a break in program execution should occur. When debugging machine
code, it is helpful to test in small manageable "chunks" by executing code to a selected point where parameters can be
examined.

To set a breakpoint, type S. The program in memory executes to a specified point and then returns to the monitor. The
contents of memory and the processor's registers are displayed so that you can compare these values to your
expectations. Type R to remove the breakpoint. Setting a breakpoint automatically clears a previously set breakpoint.

Important: The specified breakpoint address is changed to a three-byte instruction that jumps back to a special monitor
routine. If the program should crash during debugging and alter the reserved memory, unpredictable results may occur. It
is good practice to record breakpoint addresses when you enter them. If disaster occurs, you can examine those locations
(display command) and take corrective action.

EXECUTE: You can execute a program by typing E at the main menu. The monitor prompts for the starting hex
address. If a breakpoint is detected during execution, the program halts and return control to the monitor.

EXAMINE: If X is entered from the main menu, the contents of the processor's internal registers as they were when
the last breakpoint was detected.

VERIFY: When V is typed, the VSM compares two blocks of memory to verify if their contents are identical. The
monitor prompts for the source address (4-digit hex), address to begin the comparison, and the number of consecutive
bytes of data to compare. When this routine completes its comparison, it responds with either:
 Verify Passed or
 Error at [address] ...and return to the main menu

QUIT: To exit from the routines in the Monitor and return to BASIC, type Q at the main menu. <Enter> is not required.
Control is returned to BASIC and the system prompt > appears.

:TIMER-COUNTERS: This routine programs the two CPU timer-counters for precise time delays. Parameters are
selectable from the routine's menu. VSM compiles a relocatable subroutine, CALLable from BASIC, that occupies 56 hex
location (86 decimal). Multiple subroutines can be placed in either RAM or EPROM memory using the Block Move
command.

Type 'CALL 14320' from the BASIC prompt (>) to begin this routine. VSM responds:

UNIVERSAL TIMER PROGRAM
A = TIMER 0
B = TIMER 1
YOUR SELECTION?

SELECT TIMER: Select either timer A or B.

SELECT THE TIME BASE: Select the time base using the corresponding code letter:
A 1/10 second
B 1/100 second

Vitrax Plus Operations Manual - Page 31

 C 1/1000 second
 D 1/10000 second

ENTER TIME BASE MULTIPLIER: Enter the number to multiply by the selected time base to achieve the
precise delay interval of your choice. The number must be in decimal notation and less that 65535. The timer delay of the
created subroutine time base) x (base multiplier).

Example: SELECT TIME BASE: B 1/100 is selected
ENTER TIME BASE MULTIPLIER: 500 multiplier is 500

Subroutine, when CALLed, will produce a 5 second delay

VSM compiles the data to produce a compact machine code routine which generates precise time delays The finished
code may be relocated and combined with your BASIC program. The starting address along with the program length
appears on your console at compile time. Be sure to note this address for relocation purposes.

At this point, the compiled timer program will be in contention with BASIC for memory space. Relocate the program using
the Block Move command. Before moving a subroutine to EPROM, read the section on Block Move about changing the
Wait State Register and connecting a Vpp supply.

The timer routines are highly accurate except for a negligible error that occurs during each reload cycle. Before using a
routine in critical applications, you should confirm its accuracy. To prevent lengthy interrupts from affecting accuracy,
interrupts are disabled during the timer intervals. If your program uses interrupts, be sure to re-enable them when the timer
program returns control to BASIC.

RAM MEMORY DIAGNOSTICS : The Monitor contains a routine to test RAM memory for write/read operation,
retention and addressibility. Type CALL 15800 to begin the test. The routine displays the memory size and the results of
a five-part test as either PASS or FAIL. To repeat the test press the space bar. To end the test and return to the system
prompt (>), press Q once - and then the <Enter> key three or four times to reinitialize the system and set the channel
baud rate..

HEX / DECIMAL CONVERSIONS: It is often helpful when writing machine code routines that interface to
BASIC to switch between hex and decimal notation. Two conversion routines are provided in VSM: Hex-to-Decimal and
Decimal-to-Hex. To invoke these routines, type either of the following CALL statements at the system prompt (>):

Hex-to-Decimal: CALL 8960
Decimal-to-Hex: CALL 8750

When entering hex numbers, one to four digits may be entered (0 to FFFF). Decimal numbers may range from 0 to
65535. The monitor displays the corresponding conversion and prompts for 'more' (M) or 'quit')Q). To enter another
number for conversion, first press M, <Enter> and then enter the new number. To return to the system prompt, press Q.
<Enter> is not required.

*** PROGRAMMING & USING EPROMs ***

Central to almost every control and embedded system is the ability to store application code in non-volatile memory,
typically EPROM. The Vitrax Plus Controller provides 16K bytes of EPROM space for your BASIC code and a built-in
flexible EPROM programmer. A Vpp power supply of 12.5 or 21 vdc is required at Connector J1.

BASIC code that you develop on-board can be directly programmed into EPROM (U7) with the EPROM command which
automates the process. Jumper W1 (with shorting block installed) allows EPROMs to be changed while maintaining the
system's operating integrity.

Page 32 - Vitrax-Plus Operations Manual

PROGRAMMING SET-UP: Here are a few precautions to achieve reliable programming:

1. Provide a regulated Vpp supply of 12.5 ± 0.2 volts (21.0 ± 0.5 volts) depending on the type of EPROM to be
programmed - and control the method of applying and removing the Vpp voltage to avoid spikes and overshoot.

2. Insert the EPROM to be programmed in U7 and connect the leads of the Vpp programming supply before writing code
into RAM memory. If it becomes necessary to install or change EPROMs in U7 with Vcc power on, install jumper W1
temporarily to prevents the possible loss of code in RAM from noise being generated during the removal and insertion.
Jumper W1 must be removed at all other times.

3. Back up RAM code to disk before programming it into EPROM.

4. Use only 150 ns (or 200 ns) EPROMs, otherwise the zero-wait state performance expected by the processor may
cause intermittent problems.

SUPPORTING SOFTWARE: Vitrax BASIC contains two commands to support EPROM programming: EPROM
programs BASIC code from RAM directly to EPROM in Z7. LOAD, a complementary command to EPROM, copies the
EPROM contents to RAM. Its provides a convenient method to edit or update BASIC code previously committed to
EPROM. Be sure to clear RAM with NEW before LOAding

EPROM PROGRAMMING PROCEDURE: The Vitrax PLUS Controller can be used to program 27128/A
EPROMs at either 12.5 or 21.0 vdc depending on device type and manufacturer:

1. Start with the + 5 vdc power OFF. Connect the Vpp Programming supply to the pads (J1) along the right edge of the
board. Observe polarity. Vpp supply OFF.

2. Insert an erased EPROM to be programmed in Z7. Orient pin 1 upper left.

3. Turn ON the main +5 vdc power. Generate BASIC text in RAM.

4. When code is ready for EPROM, turn ON the Vpp supply. Type EPROM <Enter> to program code from RAM (U8) to
EPROM (U7). A "*" is displayed as each 256 bytes are programmed. The complete EPROM (16K bytes) is programmed
with a byte-by-byte verify. Errors are reported. When programming is complete, the BASIC ">" appears.

5. Turn OFF the Vpp power supply. Procedure is complete. Confirm that the EPROM operates as expected: Press reset
switch, SW1 or toggle the main power supply off - then on. The U7 EPROM code should begin RUNning.
PROGRAMMING POWER SUPPLY - Vpp: EPROMs requires a Vpp supply of 12.5 or 21.0 vdc depending on
the EPROM type. The power supply should be well regulated with transient-free switching characteristics. An LM317T
adjustable regulator can serve as the main component. Its input side can be connected to a rectified AC source from a
110/24, 100 ma transformer -- or it can be battery-powered with three (or two) inexpensive 9-volt batteries wired in series.

A dual Vpp supply, shown below, allows both types of 27128 EPROMs to be programmed. The 10 mfd capacitor helps
eliminate voltage overshoot when the supply is powered on. A red LED indicates when voltage is present at the output of
the supply. If only 27128A EPROMs are to be programmed, the selection switch and one 1% resistor can be eliminated.
Only two 9-vdc batteries (vs three) are needed.

Vitrax Plus Operations Manual - Page 33

+

S1

I A O

2.15K
1%

S2

LM317T
Regulator

27 VDC

10 uf
35 v

LED

2K
5%

243
1%

+

-

+

3.83K
1%

OUT +

OUT -

Power Supply Schematic for Programming EPROMs

EPROM and LOAD commands handle data in 16K-byte increments. To program code segments with defined addresses
into EPROM, follow the procedure already described with these exceptions:

1. Change the Wait Register: OUT 50,240.
2. Using the BASIC's command mode, type the following line of code:
 R=aaaa:E=bbbb:FOR I=1 TO N:B=PEEK(R):POKE E,B::R=R+1:E=E+1:NEXT I (NO <Enter>)

Where R is the starting address (decimal) in RAM
E is the starting address (decimal) in EPROM
N is the number of bytes to be programmed

3. Turn on Vpp supply at J1 and press <Enter> to begin programming. After programming is complete (prompt (>)
appears)), restore the settings in the Wait State register: Type OUT 50,48

AUTO-START MODE: When an EPROM with application code resides in U7 and main power is applied to the
controller, automatic operation begins. A supporting console is not required. A routine in the BASIC ROM senses the
presence of a EPROM (non-FF at the first U7 memory location). The process occurs automatically when main power is
applied or the reset switch, SW1, is pressed. On start-up, the console serial channel (#1 at J3) defaults to 9600 baud
N/7/1.

*** APPENDIX ***

Page 34 - Vitrax-Plus Operations Manual

 ASCII CODES: DECIMAL and HEX VALUES

The following table lists ASCII Character Codes in hex and decimal format. Since BASIC handles its code
in ASCII decimal format, this chart can be useful in converting one ASCII format to another.

ASCII HEX DEC ASCII HEX DEC ASCII HEX DEC ASCII HEX DEC ASCII HEX DEC ASCII HEX DEC

NUL 0 0 SYN 16 22 comma 2C 44 B 42 66 X 58 88 n 6E 110

SOH 1 1 ETB 17 23 hyphen 2D 45 C 43 67 Y 59 89 o 6F 111

STX 2 2 CAN 18 24 period 2E 46 D 44 68 Z 5A 90 p 70 112

ETX 3 3 EM 19 25 / 2F 47 E 45 69 [5B 91 q 71 113

EOT 4 4 SUB 1A 26 0 30 48 F 46 70 \ 5C 92 r 72 114

ENQ 5 5 ESC 1B 27 1 31 49 G 47 71] 5D 93 s 73 115

ACK 6 6 FS 1C 28 2 32 50 H 48 72 ^ 5E 94 t 74 116

BEL 7 7 GS 1D 29 3 33 51 I 49 73 - 5F 95 u 75 117

BS 8 8 RS 1E 30 4 34 52 J 4A 74 ` 60 96 v 76 118

HT 9 9 US 1F 31 5 35 53 K 4B 75 a 61 97 w 77 119

LF 0A 10 space 20 32 6 36 54 L 4C 76 b 62 98 x 78 120

VT 0B 11 ! 21 33 7 37 55 M 4D 77 c 63 99 y 79 121

FF 0C 12 " 22 34 8 38 56 N 4E 78 d 64 100 z 7A 122

CR 0D 13 # 23 35 9 39 57 O 4F 79 e 65 101 { 7B 123

SO 0E 14 $ 24 36 : 3A 58 P 50 80 f 66 102 | 7C 124

SI 0F 15 % 25 37 ; 3B 59 Q 51 81 g 67 103 } 7D 125

DLE 10 16 & 26 38 < 3C 60 R 52 82 h 68 104 ~ 7E 126

DC1 11 17 ' 27 39 = 3D 61 S 53 83 i 69 105 DEL 7F 127

DC2 12 18 (28 40 > 3E 62 T 54 84 j 6A 106

DC3 13 19) 29 41 ? 3F 63 U 55 85 k 6B 107

DC4 14 20 * 2A 42 @ 40 64 V 56 86 l 6C 108

NAK 15 21 + 2B 43 A 41 65 W 57 87 m 6D 109

*** MEMORY MAPS ***

Vitrax Plus Operations Manual - Page 35

DEC HEX MEMORY MAP OF I/O SPACE

0 0 Microprocessor I/O Registers -see Supplement Section for details

144 90 ADR R/W A/D FUNCTION

145 W Data Format

145 W Frequency Divide Ratio

144 W Select Data Channel

145 R Data bits 9 - 2

144 R Data bits 1, 0

160 A0 REG ADDRESS R.T. CLOCK FUNCTION ACCESS

0 160 A0 Control R/W

1 161 A1 1/10 second R

2 162 A2 seconds R/W

3 163 A3 tens seconds R/W

4 164 A4 minutes R/W

5 165 A5 tens minutes R/W

6 166 A6 hours R/W

7 167 A7 tens hours R/W

8 168 A8 days R/W

9 169 A9 tens days R/W

10 170 AA months R/W

11 171 AB tens month R/W

12 172 AC years R/W

13 173 AD tens years R/W

14 174 AE day-of-week R/W

15 175 AF settings R/W

176 80 NOT USED

192 C0 Parallel Port: Port A = 192 (C0)

 Port B = 193 (C1)

 Port C = 194 (C2)

 Control = 195 (C3)

208 D0 NOT USED

224 E0 LCD Display: Instructions = 224 (E0)

 Data = 225 (E1)

240 F0 NOT USED

DEC HEX MEMORY MAP: DIRECT MEMORY SPACE

Page 36 - Vitrax-Plus Operations Manual

0 0
BASIC INTREPRETER

 16384 4000 EPROM (Application Code) + EPROM Programmer

 32768 8000 Reserved for BASIC Initialization
(695 Bytes)

 33463 82B7

8K x 8 RAM

32K x 8 RAM 40704 9F00 Stack for 8K x 8
(256 bytes)

 48896 BF00 Stack for 32K x 8
(256 bytes)

 49152 C000
 Protected Memory Area
 for CALLs, data tables
 and special user code

(16128 bytes)

 65280 FF00 Data buffer for 2nd serial
channel (128 bytes)
65280 = data xfer address

 65408 FF80 Data Received flag

 65409 FF81 Baud rate setting

 65410 FF82 Data bits setting

 65411 FF83 Parity on/off

 65412 FF84 Parity odd/ even

 65413 FF85 Stop bits setting

 65414 FF86 X-on/X-off or RTS

 65415,6 FF87,8 Data Input pointer

 65417 FF89 Buffer full flag

 65418

65535

 FF8A

FFFF

 Protected memory area for
 CALLs, data tables and
 special user codes

(118 bytes)

Vitrax Plus Operations Manual - Page 37

*** COMPONENT PARTS LIST ***

INTEGRATED CIRCUITS CAPACITORS
 U1 64180 Microprocessor C1, 2 20 pf disc ceramic

 U2, U3 LS138 (ALS138) C3 1000 pf disc ceramic

 U4 HC04 (ALS04) C4 1.0 uf (0.47) dipped tantalum

 U5 27128 BASIC ROM C5 1000 pf disc ceramic

O U7 27128-15 Application Code C6 0.1 uf monolithic capc

 U8 6264LP-15 (62256LP-15) C7 100 pf disc ceramic

 U9 LS123 C8, 9 0.1 uf monolithic capc

 U10 ALS02 C C10 15 pf disc ceramic

 U11 HC04 -5v generator C C11 100 pf disc ceramic

 U12 1489A C C12 5 - 30 pf circular trimmer

 U13 TL084 (TL064, 4064) C13 2.2uF (1.0) dipped tantalum

 U15 8255A-5 (82C55A-5) C101-107 0.1 uf monolithic capc

C U16 58274 RT Clock Option C109-112 0.1 uf monolithic capc

A U23 7004 A/D Conv Option C C113 0.1 uf monolithic capc

Not used: U6, U14, U17 - 22 C120 10 uf dipped tantalum

Not Used: C11, C108, C114-119

SOCKETS DIODES
 Z1 Socket - 64 pin (0.070" spacing) CR1 1N914

 Z5,7,8 Socket - 28 pin (0.100" spacing) CR2 1N270 (1N5817,8)

 Z15 Socket - 40 pin (0.100" spacing) CR3, 4 1N914 OR gate at U9

C Z16 Socket - 16 pin (0.100" spacing) CR5, 6, 7 1N914 -5V generator

A Z23 2 14-pin strips (0.100" spacing) C CR8, 9 IN270 (1N5817,8)

 MISCELLANEOUS RESISTORS
C Q2 2N7000 U16 Write line L POT1 5K (10K) Single turn pot

 SW1 Switch mom push btn - n.o. A POT2 5K (10K) Multi turn pot

 X1 12.288 MHz crystal U1 processor R3, 4 10K - 1/8w brn-blk-org

C X2 32.768 KHz crystal RT Clock U16 R6 10K - 1/8w brn-blk-org

 P/C PC board 4-1/2" x 6-1/2" R9,10 1K brn-blk-red

 OAM-M Operations Manual C R13 10K brn-blk-org

O OAM-AS Assembly Manual RP-1, 2, 3 10K - 10 pin 9 resistor SIP

A OAM-A Oper/Assy Manual A/D Converter option

C OAM-C Oper/Assy Manual RT Clock option Not used: R1, R2,R5,R7,R8,R11,R12

L OAM-L Oper/Assy Manual LCD Display option

C BH Battery Holder Assy for RT Clock option

Page 38 - Vitrax-Plus Operations Manual

CONNECTORS, JUMPERS, HEADERS

 J1 1 x 2 pin header for Vpp vopltage input to program EPROMs

C J2 1 x 2 pin header for battery input for RT clock option

 J3, J4 1DB9 male connector, pc mtg, for for serial I/O channels at J3 and J4

O, F J6 26 pin (2 x 13) header for printer port

O, E J7 50 pin (2 x 50) header for parallel port at U15

L J8 14 pin (2 x 7) header furnished with LCD module and cable

A J12 20 pin (2 x 10) header furnished with A/D Converter option

 J14 2-circuit, screw terminal block for Vcc power input, pc mtg

 W1 1 x 2 pin header and jumper block for EPROM change

 W4 2 x 2 pin header and jumper block for RAM selection

 W8 2 x 2 pin header and jumper blocks (2) for Rx /Tx interchange for auxiliary serial channel

 W9 2 x 2 pin header and jumper block for DCDO selection for auxiliay serial channel

 EXPLANATION OF SYMBOLS IN LEFT MARGINS

 A = Part is furnished in A/D Converter Module J = Optional connector for A/D Converter inputs
 C = Part is furnished in Real-Time Clock Module L = Part is furnished with LCD module cable assy
 E = Optional connector for I/O lines O = Parts are optional
 F = Optional connector ;Centronics-type printer None = Parts furnished in Vitrax-PLUS Controller Kit

Connects to J6

 OUT PE BSY ACK D8 D7 D6 D5 D4 D3 D2 D1 STB
 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19

26-pin connector
2 x 13 - 0.1" centers

 14 15 16 17 18 19 20 21 22 23 24 25 26
13 12 11 10 09 08 07 06 05 04 03 02 01

PRINTER CABLE ASSEMBLY

Cable Assembly is viewed from cable side with connector openings facing down

 J6 Pin Number - - - - - - - 01 03 05 07 09 11 13 15 17 19 21 23 25
 J6 Signal Name - - - - - - - - GND NC BSY ACK GND D7 D6 D5 D4 D3 D2 D1 STB

U15 Pin Number - - - - - - - - 15 14 - 38 39 40 01 02 03 04 37
 U15 Signal Name - - - - - - - - - - PC1 PC0 - PA6 PA5 PA4 PA3 PA2 PA1 PA0 PA7

cut
this
wire

36-pin Centronics type
Connector for printer

dashed line show
ground circuits

Vitrax Plus Operations Manual - Page 39

Page 40 - Vitrax-Plus Operations Manual

